
Computational Biology and Chemistry 95 (2021) 107584

Available online 24 September 2021
1476-9271/© 2021 Elsevier Ltd. All rights reserved.

Research Article

Deep_CNN_LSTM_GO: Protein function prediction from
amino-acid sequences

Mohamed E.M. Elhaj-Abdou a,*, Hassan El-Dib a, Amr El-Helw a, Mohamed El-Habrouk b

a Faculty of Engineering, Arab Academy for Science and Technology and Maritime Transport, Alexandria, Egypt
b Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt

A R T I C L E I N F O

Keywords:
Deep learning
Gene ontology
CNN
LSTM
Protein function prediction
MF
BP
CC
UniProt-SwissProt
CAFA

A B S T R A C T

Protein amino acid sequences can be used to determine the functions of the protein. However, determining the
function of a single protein requires many resources and a tremendous amount of time. Computational Intelli
gence methods such as Deep learning have been shown to predict the proteins’ functions. This paper proposes a
hybrid deep neural network model to predict an unknown protein’s functions from sequences. The proposed
model is named Deep_CNN_LSTM_GO. Deep_CNN_LSTM_GO is an Integration between Convolutional Neural
network (CNN) and Long Short-Term Memory (LSTM) Neural Network to learn features from amino acid se
quences and outputs the three different Gene Ontology (GO). The gene ontology represents the protein functions
in the three sub-ontologies: Molecular Functions (MF), Biological Process (BP), and Cellular Component (CC).
The proposed model has been trained and tested using UniProt-SwissProt’s dataset. Another test has been done
using Computational Assessment of Function Annotation (CAFA) on the three sub-ontologies. The proposed
model outperforms different methods proposed in the field with better performance using three different eval
uation metrics (Fmax, Smin, and AUPR) in the three sub-ontologies (MF, BP, CC).

1. Introduction

In the bioinformatics field, one of the most essential and critical
motifs is proteins (Li et al., 2002). Proteins provide many essential
functions and responsibilities in the organism’s body, such as DNA
structure, muscle building, antibody support, immunity against dis
eases, and much more. Their function characterizations and annotations
serve many sensitive biological, computational applications, such as
new drug discovery that could help in global pandemics like HIV/Aids,
Cholera, COVID-19 viruses, and many more uses. Protein function pre
diction can help find the relations between such genes and phenotypes
or genetic diseases by understanding the mechanisms, patterns, and
relations between these diseases and the genes located in that organism
(Lindsay, 2003). There are massive, exponentially increasing needs for
discovering these functions for such applications. However, traditional
experimental procedures for discovering these functions in the genomics
laboratories are very slow compared to these needs (Saeidnia et al.,
2015).

On the other hand, computational-intelligent methods and algo
rithms were proposed and introduced to predict the proteins’ function

using amino acid sequences faster. These use the complete information
and a plethora of protein functions that have been published in bio
logical research. This biological information is digitized and saved in
online public databases that can be accessed and downloaded without
limitations.

Protein function prediction has been a hot topic application in bio
informatics for the last two decades. Providing information and under
standing of protein functions can increase the speed of drug discovery.
This is possible due to many factors (Keedwell and Narayanan, 2005),
such as the diversity of the computational-intelligent techniques, the
possibility of merging between them to overcome the computational
bottlenecks, fast and accurate predictions, in addition, the strong
hardware support.

Protein function prediction methods can be classified according to
the biological information data types, such as protein amino acid se
quences, 3D structure, protein folding information, protein-protein
interaction networks, gene expression, protein family, integration be
tween these various sources, and more. As mentioned earlier, many
databases have been proposed and published online to describe the
biological information of proteins in its digital format suitable for

* Corresponding author.
E-mail addresses: mohamed_elhajabdou@student.aast.edu (M.E.M. Elhaj-Abdou), hassaneldib@aast.edu (H. El-Dib), elhelw@aast.edu (A. El-Helw), eepgmme1@

yahoo.co.uk (M. El-Habrouk).

Contents lists available at ScienceDirect

Computational Biology and Chemistry

journal homepage: www.elsevier.com/locate/cbac

https://doi.org/10.1016/j.compbiolchem.2021.107584
Received 5 May 2021; Received in revised form 8 September 2021; Accepted 21 September 2021

mailto:mohamed_elhajabdou@student.aast.edu
mailto:hassaneldib@aast.edu
mailto:elhelw@aast.edu
mailto:eepgmme1@yahoo.co.uk
mailto:eepgmme1@yahoo.co.uk
www.sciencedirect.com/science/journal/14769271
https://www.elsevier.com/locate/cbac
https://doi.org/10.1016/j.compbiolchem.2021.107584
https://doi.org/10.1016/j.compbiolchem.2021.107584
https://doi.org/10.1016/j.compbiolchem.2021.107584
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compbiolchem.2021.107584&domain=pdf

Computational Biology and Chemistry 95 (2021) 107584

2

computation.
UniProtKB (The UniProt Consortium, 2019) database was proposed

for amino acid sequences. It is an extensive database published to pro
vide rich annotations and information on proteins and their functions.

Many global initiatives have been provided and proposed in order to
find the unknown functions for a known sequence such as Critical
Assessment of Function Annotations (CAFA) challenges (Radivojac
et al., 2013; Jiang et al., 2016; Zhou et al., 2019). Full details for Uni
ProtKB and CAFA will be further explored and discussed in Section III.

Protein Information Resource (PIR) (Wu et al., 2003) database is an
online public resource that provides information for both genome and
protein levels to represent the sequence information for each one of
them.

For 3D structure protein representation, Protein Data Bank (PDB)
(Berman et al., 2000), Nucleic acid Receptors DataBase (NucleaRDB)
(Vroling et al., 2012), and Structural Classification Of Proteins (SCOP)
(Murzin et al., 1995) databases are available. PDB and NucleaRDB deal
with 3D shapes of both proteins and nucleic acids. NucleaRDB provides
2D and 3D structural information, alignment, the chromosomal location
of nuclear receptor genes, potential Nuclear Localization Signals (NLS),
and binding partners, in addition to sequence-based information such as
cDNA, multiple alignments, and phylogenetic trees. SCOP provides
detailed information about evolutional relationships between
PDB-database proteins dealing with family, superfamily, folding, and
protein types.

The interactions between proteins are provided in many different
databases, such as the Search Tool for the Retrieval of Interacting Genes/
Proteins (STRING) (Szklarczyk et al., 2016) database. STRING uses a
spring model to generate the network images. Nodes are modeled as
masses and edges as springs. The nodes’ final position in the image is
computed by minimizing the system sub-cellular locations ’energy’. It
contains 24.5 million proteins from more than 5000 organisms.

Clusters of Orthologous Groups (COG) protein database (Tatusov
et al., 2000) is an attempt to reach a phylogenetic classification of the
proteins encoded in 21 complete genomes of bacteria, archaea, and
eukaryotes. Phylogenetic classification represents how species are
related to each other through a common ancestor.

Some other databases deal with one or a group of specific proteins
such as LIPASE (Fischer and Pleiss, 2003), G Protein-Coupled Receptors
(GPCRDB) (GPCRdb, 2020), and Transporter Classification Databases
(TCDB) (Saier et al., 2006). LIPASE deals with the enzyme LIPASE,
responsible for the breakdown of fats in food during the digestion pro
cess. GPCRDB deals with the family of G proteins acting as molecular
switches inside cells. TCDB classifies more than 1500 families of mem
brane transport proteins in a different organism.

The rest of this paper is organized as follows: Section II presents the
background and related work. In section III materials and methods are
introduced and illustrated with full details. In section IV, explains the
proposed model. While in Section V is the theoretical part explanation of
the used evaluation metrics. the results were discussed and evaluated
with multiple evaluation metrics. Section VI. In Section I discuss and
mention the advantageous of the proposed model. And finally, Section II
concludes the paper as well as pointing out suggested future work.

2. Related work

Another way to classify the protein function prediction methods is
according to the types of computational approaches used:

• Conventional
• Machine Learning
• Deep Learning

BLAST (Altschul et al., 1990), the primary technique from the con
ventional approaches, is a tool proposed for local alignment search to
compare and find the similarities between two sequences for protein

function prediction. Many updates and improvements have been pro
posed on BLAST, such as PSI-BLAST (Altschul et al., 1997), for perfor
mance enhancement.

ProMK (Yu et al., 2015) as a machine learning approach uses a
combination of five different kernels from the K-Nearest Neighbors
(KNN) algorithm (Euclidean, Standardized Euclidean, Cosine, Correla
tion, and Spearman) targeting different orgasms such as yeast, human,
and mouse) for predicting the function of the protein.

A variety of deep learning approaches have been proposed for pro
tein function prediction. Some of these techniques used UniProtKB and
CAFA datasets. These techniques are briefly summarized in the
following paragraphs for the sake of comparison with the proposed
technique.

In Go-FDR (Gong et al., 2016) was proposed for protein function
prediction from sequences. GO-FDR uses the PSI-BLAST sequence
alignment algorithm to generate position-specific scoring matrix PSSM
(Alejandro et al., 1999) to score the relevant GO term depends on the
relative entropy. The evaluation is done against the CAFA2 competition
and ranked from the top methods in this compition.

In FFPred 3.0 (Cozzetto et al., 2016), the SVM algorithm is selected
to generate predictions by scanning the input sequences. SVM library
was trained using the GO annotations and UniProtKB. The training set
was extended to cover the three domains MF, BP, CC. SVM with Mat
thews correlation coefficient (MCC) is used, candidate functional classes
were identified based on the availability of sufficiently large and
confident positive and negative instances.

In Go-labeler (You et al., 2018a), logistic regression combined with
BLAST-KNN was used for protein function prediction. The model is
trained on the UniProtKB dataset. To extract the information and the
features from the sequences, K-mers (Kawulok and Deorowicz, Apr 17,
2015), InterPro (Mitchell et al., 2015), and ProFET (Ofer and Linial,
2015) algorithms were used and conducted. The evaluation is done
using Fmax, S-min, AUPR metrics on CAFA1 and CAFA2.

In Deep_GO (Kulmanov and Khan, 2018), a convolutional neural
network (CNN) is used and trained for protein function prediction using
two different sources, the amino acid sequences from
UniProtKB-Swissport and the protein-protein interaction network from
the STRING databases. The model was evaluated using Fmax, AUPR, and
MCC. The CNN model was constructed with around 20 layers included
pooling, embedding, and activation functions.

MTDNN (Fa et al., 2018) proposed a model for predicting human
proteins using a malti-task feedforward neural network. The model is
constructed from 6 feedforward layers with activation functions: RELU,
sigmoid, and softmax in the output layer. The proposed method uses
both the shared representations of all tasks and specific characteristics of
individual tasks. MTDNN trained the model using the GO dataset to
predict and annotate the amino acid sequence against only five different
classes. The evaluation is done using the F1 score and the CAFA
challenge.

Deep_Go_Plus (Kulmanov and Hoehndorf, 2020) predicts the func
tions of the protein from sequences. A CNN and similarity-based method
BLAST are combined using the weighted sum approach. The proposed
model was constructed from 49 layers activated with sigmoid and RELU
activation functions. The model used UniProtKB-Swissport as the
training dataset. While the test set used CAFA challenge datasets and
subset samples from the UniProtKB-Swissport. The proposed model was
evaluated using Fmax, Smin, and AUPR.

From the previous deep learning discussed methods, Deep-GO-Plus
(Kulmanov and Hoehndorf, 2020) and DeepLoc (José Juan Almagro
Armenteros et al., 2017) used a combination of multiple techniques.
Deep_Go_Plus (Kulmanov and Hoehndorf, 2020) combined BLAST with
a CNN using a weighted sum method, while DeepLoc (José Juan
Almagro Armenteros et al., 2017) combined LSTM and CNN. In addition,
for the machine learning approach, ProMK (Yu et al., 2015) combined
multiple kernels of KNN.

The approaches (Taju et al., 2018; Nauman et al., 2019; José Juan

M.E.M. Elhaj-Abdou et al.

Computational Biology and Chemistry 95 (2021) 107584

3

Almagro Armenteros et al., 2017; Wei et al., 2018; Clark and Radivojac,
2011; Minneci et al., 2013; Yu et al., 2015; Yunes and Babbitt, 2019)
were also proposed in the literature. However, they will not be discussed
because of these approaches are:

• used different datasets (Taju et al., 2018; Nauman et al., 2019;
Minneci et al., 2013)

• applied their techniques to different targets (such as subcellular
localization prediction (José Juan Almagro Armenteros et al., 2017;
Wei et al., 2018) and proteins family function prediction (Taju et al.,
2018)).

• The model was designed and Performed on a subset of the domains
(Clark and Radivojac, 2011; Minneci et al., 2013; Yunes and Babbitt,
2019) (MF, BP, and CC).

All these reasons rendered their comparison with the proposed
technique in this paper rather difficult.

Among these other approaches, DeepLoc (José Juan Almagro
Armenteros et al., 2017) used a combination of two deep learning ar
chitectures (LSTM and CNN) for subcellular localization prediction
using amino-acid sequences. The training was performed on the Uni
ProtKB database against ten subcellular locations. The CNN model was
designed with two layers, while the RNN model was designed with two
LSTM layers. The maximum length of the input sequence in this
approach was limited to 1000.

This paper proposes the combination of two cascaded deep learning
algorithms (CNN and LSTM) to improve the results and reduce the
computational burden in protein function prediction.

3. materials and methods

3.1. Training and test datasets

This paper is focused on the primary Amino-Acid sequence. To train,
validate and test the model UniProtKB-SwissProt database was used. In
addition, CAFA datasets were selected for testing the proposed model for
different organisms.

3.1.1. UniProtKB dataset
UniProtKB (The UniProt Consortium, 2019) database was proposed

for amino acid sequences. It is an extensive database published to pro
vide rich annotations and information on proteins and their functions.
Some of the UniProtKB database’s core data are amino-acid sequences,
protein names, protein descriptions, cross-references, taxonomy data,
and citation information. UniProtKB consists of two main sub-datasets,
UniProtKB-SwissProt and UniProtKB-TrEMBL.

UniProtKB-SwissProt is a high-quality, fully experimentally proven
annotations. This information was manually extracted from both
computational methods and biological literature and then verified with
different experimental techniques performed in biological labs.

The second section is UniProtKB-TrEMBL, which is the information
that was extracted from computational methods only and still waiting to
be manually reviewed in biological literature.

as shown in Fig. 1 and Fig. 2 the number of entries in both UniProtKB
Swissport and TrEMBL. For the UniProtKB/TrEMBL is remarkably
increasing over 200 M entries, while on the other hand UniProtKB/
Swissport over 500 K entries.

In order to take a look inside the distribution of the sequences lengths
of the overall entries in the database, the following Fig. 3 shows a sta
tistical result from lengths range from 1 to > 2600 in UniProtKB/
TrEMBL. While on the other hand UniProtKB/ Swissport length distri
bution shown in Fig. 4.

The sequences of proteins employed in this research were conducted
and downloaded from the UniProtKB database (The UniProt Con
sortium, 2019). UniProtKB-SwissProt’s was used in the proposed
method to construct the training and the test set. These include:

• Protein names
o Protein name is a string code constructed from chars and numbers

such as “1433B_HUMAN” for protein name (14-3-3) protein beta/
alpha. its Homo sapiens protein with CC Function type.

• Accessions entity
o It’s a list of numbers associated with the entity, this numbers

provide a stable way of identifying entries from the release dates,
this helps in the mapping procedure between the Gene Ontology
dataset which is the target and the amino acid sequences.

• Amino-acid sequences
o Represent the sequence of the alphabets chars each alpha bit

represent a specific amino acid.
• Annotations (GO ID’s)

o Gene-Ontology represent the target functions of that specific
protein.

• Organism’s name
o Represent the kingdom of the species such as bacteria species or

homo- sapiens species.

The training and test sets were filtered using two criteria. First, the
datasets were filtered with the annotations that have biological experi
mental evidence codes (IGI, IEP, TAS, IC, EXP, IDA, IPI, IMP) targeting
human proteins. Second, a filter was performed by removing the pro
teins that have no GO annotations. The number of samples in the
training, validation, and test sets were 51344, 5705, and 71, respectively
as shown in Fig. 5.

3.1.2. CAFA dataset
CAFA is a yearly global challenge proposed in the field of bioinfor

matics aimed to predict the function of proteins from their sequences or
structures. CAFA challenge series was introduced in 2010/11 in order to
find functions of proteins that rapidly increased in online databases and
biological literature. Table 1 presents a comparison between the various
CAFA datasets available online.

To evaluate the proposed method, three different test sets were

Fig. 1. Number of Entries in UniProtKB/TrEMBL.

Fig. 2. Number of Entries in UniProtKB/SwissProt’s.

M.E.M. Elhaj-Abdou et al.

Computational Biology and Chemistry 95 (2021) 107584

4

selected from the CAFA series. From CAFA4, a number of samples were
selected as test cases from eight different organisms, including human to
test if the proposed model can adapt with other species sequences. From
CAFA3, a specific number of samples were selected from the human
organism. The number of test sets selected from each CAFA dataset is
presented in Table 2. While in CAFA2, 281 samples from bacteria or
ganism were selected.

Fig. 3. Length Distribution of sequences in UniProtKB/TrEMBL.

Fig. 4. Length Distribution of sequences in UniProtKB/SwissProt’s.

Fig. 5. The training validation and test sets statistics.

Table 1
CAFA Data Sets Comparison.

Dataset Introduced Number of Organisms Tasks

CAFA4 2019/20 18 1-Phenotype prediction.
2-Protein function prediction.

CAFA3 2017/18 23 1-Phenotype prediction.
2-Protein function prediction

CAFA2 2013/14 28 Protein function prediction
CAFA1 2010/11 18 Protein function prediction

M.E.M. Elhaj-Abdou et al.

Computational Biology and Chemistry 95 (2021) 107584

5

3.2. Predicted (target) functions

Gene-Ontology (GO) (Ashburner et al., 2000) is a hierarchical
description of protein functions that describe three categories. The
Growth of the Gene-Ontology annotations in the scientific publications
research over time is remarkably increasing as shown in Fig. 6 the
number of annotations over the past three years. The GO annotations
expected to reach over 200 K annotations in 2022 which a huge
contribution in this resource.

Gene-Ontology represents the target of the predicted functions of this
research. These protein functions can be categorized as follows:

• Molecular Function (MF) are those functions belonging to the ac
tivities that occur at the molecular level (simple processes). MF de
scribes the action of the activities. However, they do not describe
where or when the activity takes place. An example of MF is the
catalytic activity or binding activity.

• Biological Process (BP) represents the largest and complex pro
cesses. Those processes represent MF activities or chemical reactions
that are involved inside and/or outside cells. An example of BP is
DNA repair and signal transduction.

• Cellular Component (CC) are those structures of which cells are
composed. CC represents complex places that exist inside and/or
outside cells where activities are performed. An example of CC is
ribosome and mitochondrion.

• In this paper, GO annotations were used for the October 2020
release. These annotations amount to a total number of classes for
12157 for MF, 30851 for BP, and 4396 for CC as shown in Fig. 7. The
number of protein functions required to be identified in this paper
amounts to 4600 protein functions.

3.3. Preprocessing technique

Protein sequences are made up of sequences of 20 Amino-Acid
characters as: Alanine (A), Arginine (R), Asparagine (N), Aspartic acid
(D), Cysteine (C), Glutamine (Q), Glutamic acid (E), Glycine (G), Histi
dine (H), Isoleucine (I), Leucine (L), Lysine (K), Methionine (M),
Phenylalanine (F), Proline (P), Serine (S), Threonine (T), Tryptophan
(W), Tyrosine (Y), Valine (V). These sequences are similar to the
example sequences shown in Fig. 8.

One hot-encoding creates a new dimension for each sequence
(Rodríguez et al., 2018). All of these dimensions are orthogonal to each
other in the vector space. The length of that vector is equal to the total
number of sequences. As shown in Fig. 8, each dimension is represented
as an integer binary vector of zeros except at the corresponding sequence
index, where a value of 1 is assigned. The methodology behind using
one-hot encoding is to prevent the model from overfitting behavior
during the training process (Shorten and Khoshgoftaar, 2019).

One hot-encoding is used in the proposed model to represent the
input layer in order to encode the input sequences. In this paper, the
proposed model can accept lengths of input protein sequences up to
2000 amino acids each. This is performed to cover the majority of input
amino acid sequences proposed in the scientific literature for real-life
scenarios.

Table 2
CAFA datasets used.

Dataset Organism Name Number of Test Sets

CAFA4 Homo-Sapian (Human) 122
Arabidopsis thaliana 535
Danio rerio 18
Mus musculus Linnaeus 136
Rattus norvegicus 42
Dictyostelium Discoideum 39
Escherichia coli K-12 53
Schizosaccharomyces Pombe 972 h- 56

CAFA3 Homo-Sapian (Human) 1131
CAFA2 Bacteria 281

Fig. 6. Growth of Gene-Ontology Annotations over time.

Fig. 7. Gene-Ontology annotations used in the dataset.

M.E.M. Elhaj-Abdou et al.

Computational Biology and Chemistry 95 (2021) 107584

6

3.4. Neural networks building blocks

3.4.1. Pooling
Pooling is a technique represented as a layer (Abdel-Hamid et al.,

2013), for down sampling the convolutional layers’ dimensions without
losing the input features’ details (O’Shea and Nash, 2015). Moreover,
pooling is a spatial invariant technique that can detect the object’s
features in different positions. Two main types of pooling, max, and
average. Max pooling is better for extracting the extreme features, while
average pooling sometimes takes all features into accounts, resulting in
non-crucial features (Giusti et al., 2013). In the proposed model
Max-Pooling type (Krizhevsky et al., 2017) is used and implemented.

3.4.2. Activation functions
Activation functions add some non-linearity to the output neurons to

allow the model to learn complex tasks (Sharma, 2017). According to
the type of the function used, it activates/deactivates some neurons from
the previous layer depending on the specific shape of the activation
function (Lau and Lim, 2017).

In the proposed system, two different activation functions were used.
The LSTM model uses a "tanh" activation function, as represented by Eq.
1, which illustrates the hyperbolic tangent function. The plotted graph
of the function is depicted in Fig. 9-A.

f(x) = tanh(x) =
2

1 + e− 2x − 1 (1)

Alternatively, the sigmoid function was chosen as an output layer of
the overall system, as represented by Eq. 2. Fig. 9-B depicts the plotted
graph of the sigmoid function employed.

f(x) =
1

1 + e− x (2)

3.4.3. Flatten layer
A flatten layer is used to convert the convolutional layer’s output into

a single long feature vector (1-D array). This process is performed to feed
this vector to the output layer. According to studies (Chollet, 2017;
Jonghoon et al., 2014), flatten layers can effectively speed up the
learning process by double.

3.4.4. Convolutional Neural Network (CNN)
Convolutional Neural Network (CNN) is a supervised learning tech

nique (Sainath et al., 2013). CNN can merge the feature extraction and
feature classification processes into a single body. Compared to the
conventional fully connected Multi-Layer Perceptron (MLP), CNN can
deal with large inputs with high computational efficiency (Gu et al.,
2018).

Since the input data is a One-dimensional (1D) sequence, it is
convenient to use a 1D CNN configuration in the proposed model that
fits the input data sequences with different size kernels (Kiranyaz et al.,
2019). 1D CNN simply requires array operations, this means computa
tional complexity is significantly lower than 2D CNNs. Therefore 1D
CNN can be trained on any standard hardware setup and does not
require a GPU.

3.4.5. Long-Short Term Memory (LSTM)
Long short-term Memory (LSTM) (Hochreiter and Schmidhuber,

1997) is a recurrent neural network architecture used in sequence
modeling and NLP applications. LSTM is an enhanced version of the
original Recurrent Neural Network (RNN) architecture. LSTM solves the
inability to access the long term memory problem of RNN. Moreover,
LSTM solves the vanishing gradient problem that the original RNN ar
chitecture suffers from (Hochreiter and Schmidhuber, 1997).

LSTM consists of three main parts: an input gate, an output gate, and
a forget gate. It can be trained to learn what information to store in the
Memory, how long to store it, and when to read it out (Sherstinsky,
2020). In the proposed model, multiple LSTM are used with different
sizes, which will be described in greater details in the next section.

4. proposed Deep_CNN_LSTM_GO model

The proposed model is constructed from a combination of CNN and
LSTM Neural Network as shown in Fig. 10. This hybrid model overcomes
the sequence modeling problems and limitations, by taking the advan
tages of both architectures.

For Deep_CNN_LSTM_GO, the protein sequence is encoded into a
matrix using one-hot encoding, which can be seen at the left of Fig. 10.

For each CNN block the model extracts the local features of input and
at a same time maps these inputs with some non-linearity to the output.
This process is repeated for each region, those regions are defined using
the number of filters and kernel sizes. As a result of that, CNN is a Neural
Network architecture that can learn the features hierarchically. In other
words, as much as the number of convolution layers are increased, high-
level, complex features are learned.

On the other hand, LSTM is an ingenious technique that can make the
Neural Network decide what important information to remember for
further use and what to filter out and forget in the sequence. Using this
advantage, the neuron can learn from features and predict subsequent
values. This combination enables the model to learn regional and tem
poral features at a time. In other words, the convolutional layers
detecting "biological words" (regional pattern) and the LSTM tying them
into a "biological sentence" with the advantage of the "remember" or
"forget" characteristics, which is then fed to a flatten layer that generates

Fig. 8. Representation of One Hot-Encoding process for three input amino acid sequences.

Fig. 9. Plotted graphs of the activation functions employed in Deep-CNN-
LSTM-GO, (A) “tanh” activation function (B) “Sigmoid” activation function.

M.E.M. Elhaj-Abdou et al.

Computational Biology and Chemistry 95 (2021) 107584

7

the final output represented in GO. As shown Fig. 11 illustrates an
example of what the proposed method can do, showing the input and
output process.

Despite imposed restrictions applied to the proposed model in order
to create a scalable model, such as the reduced number of layers, the
training is performed using standard device CPU, and other parameters
will be discussed in details in Section VI.

Deep_CNN_LSTM_GO can perform competitive result in some cases
and outperform in others using different data sets, organisms, and
evaluation metrics, as will be discussed in section V and VI.

As depicted in Fig. 10, The proposed Deep_CNN_LSTM_GO consists of
six stages, described as follows:

• First stage One Hot-Encoding is the input stage that takes an input
of the amino-acid sequences, stacking each amino acid sequence in
separate space which located lndex= 1 and the others is zeros. It
employs one-hot encoding with a maximum amino-acid sequence
input length of 2000 different symbols.

• Second stage 1D-CNN is the convolutional neural network stage. It
consists of eight parallel 1D-CNN architectures. These are con
structed and built with the following number of filters:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2000 − 7
1992 − 7
1984 − 7
1976 − 7
1968 − 7
1960 − 7
1952 − 7
1944 − 7

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1993
1985
1977
1969
1961
1953
1945
1937

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The maximum kernel size (filter length) of 128 per filter is used.

• Third Stage Max-Pooling is composed of eight Max-Pooling units
attached to the outputs of the eight 1D-CNN blocks of the second
stage. These units are constructed with a window size of 128.

• Fourth stage LSTM is allocated after each max-pooling unit. An
LSTM stage is concatenated with a dimension of output space of size
eight. It is activated with a "tanh" activation function.

Fig. 10. : Proposed Deep_CNN-LSTM-GO model. For one hot encoding the 1st parameter is (input):- represent the input amino acid sequence, while the 2nd
parameter (2000) is the max length of the input, For CNN the 1st parameter is the input represent the output from the previous layer, 2nd parameter is explains the
number of filters (kernel) while the 3rd parameters is the filter (kernel) length or size.For Pooling the 1st parameter is the input represent the output from the
previous layer, 2nd parameter is explains length or size of pooling layer. For LSTM the 1st parameter is the input represent the output from the previous layer, 2nd
parameter is explains the number of output units.

M.E.M. Elhaj-Abdou et al.

Computational Biology and Chemistry 95 (2021) 107584

8

• Fifth Stage Flatten All outputs from the LSTM stage are directed as
inputs to each one of the eight Flatten blocks forming this stage.

• Sixth stage output takes its inputs from the outputs of the eight
blocks of the Flatten stage. It contains neurons activated with the
Sigmoid activation function to add non-linearities to the output. The
number of the output neurons is equal to the number of required
functions of 4600.

The model is optimized throughout the iterative process. During the
training phase, Deep_CNN_LSTM_GO is needed to fine-tune the hyper
parameters to get the best results carefully. The training validation and
test sets were split to be 90%, 9% and 1% respectively we used this
distribution to be same as done in DeepGOPlus for further comparisons
to fair.

Model error is computed using the binary cross-entropy cost/loss
function (Goodfellow et al., 2016). Binary cross entropy performed well
against the independent data and fits with the multi-class classification
tasks such as protein function prediction tasks, where sequences repre
sent the input data and the output data has one or more GO (class).

The weights of the proposed Neural Networks model are updated
using the Adam-optimization algorithm (Sak et al.,). Adam-optimization
algorithm is chosen because it combines the best properties of two
state-of-the-art optimization algorithms (Kingma and Ba, 2014) and
(Duchi, Jul 1 et al., 2011). It is recorded in the works of literature and
many surveys (Duchi, Jul 1 et al., 2011) that most authors used
Adam-optimization because it performs well against the non-convex
optimization problems (Sak et al.). It also performs well with the
sparse noisy gradients and it consumes less Memory compared to other
optimization algorithms (Duchi et al., 2011).

Batch Gradient Descent (BGD) method (Ruder, 2016) is used to train
the data. BGD takes the average of batch gradients of all training ex
amples in just one step. Averaging gradients of all samples in training
data helps the cost function smoothly diverge to the global minimum
(Duchi et al., 2011; Ruder, 2016; Bottou et al., 2018). In addition, the
early stop technique is used during the training process to prevent
overfitting.

As discussed previously, 90% of the dataset were selected to train the
neural networks model for the training phase. The weights are first
initialized randomly to prevents the output neurons from vanishing or
exploding. At the beginning of the training step, the performance of the
neural networks is worst. Then it starts to be improve and it is optimized
using ADAM optimization. The performance is evaluated by the system
using the loss function, where this value is minimized using the cross-
entropy in order to find the best accuracy. The training phase is

started with 1024 Epoch, each Epoch has 1605 steps. After each
completed epoch the validation loss is calculated. Then the optimization
process is iteratively updated using BGD until the loss function is
minimized.

The training phase is be terminated if one of two scenarios occurs.
The first scenario is that the training and validation loss functions are
not optimized after 6 epoch. Then using early stop will terminate the
training phase with the latest optimized loss functions. The second
scenario takes place when the number of Epochs is finished.

After the process is finished a final loss function is calculated using a
10% test set. This is the test loss value. The model concludes with a test
loss value of 0.027383. The final training and validation loss functions
are 0.0359, and 0.0460 respectively.

Deep_CNN_LSTM_GO model is trained and designed using the new
version of TensorFlow that includes Keras framework (Abadi et al.,
2016; https://www.tensorflow.org/) using python programming lan
guages. The proposed model is trained on an Intel-Core i7–6700 ma
chine, with 8 GB of RAM.

5. Evaluation metrics

For evaluating the proposed Deep_CNN_LSTM_GO, five different
evaluation metrics were proposed and implemented. These are namely
Precision, recall, Fmax, Smin, and AUPR. Each of these evaluation
metrics is computed for each of the three protein functions (MF, BP, and
CC).

To calculate and evaluate the model using those metrics, a Confusion
Matrix (Stehman, 1997) is constructed first. Table 3 shows the Confusion
Matrix parameters.

5.1. Precision

Precision is a tool that measures how precise or accurate the pro
posed model is out of the predicted positive which counts how many
from the predictions are true. As shown in Eq. 3, the model’s Precision is
calculated from the numbers of True Positive (TP) and the number of

Fig. 11. Illustrated example of what the proposed method can do, showing the input and output process.

Table 3
Confusion Matrix.

Predicted

Negative Positive

Actual Negative True Negative False Positive
Positive False Negative True Positive

M.E.M. Elhaj-Abdou et al.

Computational Biology and Chemistry 95 (2021) 107584

9

False Positive (FP).

Precision =
TP

TPP
(3)

where, the Total Predicted Positive (TPP) is given by:

TPP = TP+FP

5.2. Recall

Recall measures the sensitivity of the model. Sensitivity refers to the
actual predicted positive, as shown in Eq. 4 for the True Positive (TP)
False Negative (FN).

Recall =
TP

TAP
(4)

where, the Total Actual Positive (TAP) is given by:

TAP = TP+FN

5.3. Fmax

F-1 score is a balance between Precision and recall. It is the harmonic
mean of Precision and recall. Fmax score is calculated using Eq. 5.

Fmax = Max
{

2xPrecisionxRecall
Precision + Recall

}

(5)

5.4. Smin

Smin is another evaluation metric (Clark and Radivojac, 2013). It
measures the semantic distance between real and predicted annotation
based on the classes’ Information Content (IC). This method is used in
Deep_Go_Plus (Kulmanov and Hoehndorf, 2020), Go-Labeler (You et al.,
2018a), and DeepText2Go (You et al., 2018b).

Each of the three protein functions (MF, BP, and CC) constitutes a
class (C). For each of these classes, a subgraph (T) with its nodes (ν) is
drawn.

The Information Content (IC) for a class (C) at node (ν) of subgraph
(T) can be thought of as the number of bits of information one would
receive about a protein if it were annotated with that particular sub
graph (Clark and Radivojac, 2013).

IC at a particular node of a subgraph can be calculated in a
straightforward manner using the inverse logarithm of the product of all
prediction probabilities (Pre) for class (C) given by parents of this class
(C) as shown in Eq. 6.

ICC = − log

[
∏

ν∈T
Pre(C)parents)

]

(6)

The Remaining Uncertainty (RU) is calculated at a certain gene
ontology node (i, where, i = 1..n). RU is simply the total Information
Content at node i, which is contained in True (Ti) but not in Predicted
(Pi) annotation graphs.

The Average Remaining Uncertainty (ARU) is calculated by dividing
the sum of all remaining uncertainties by the total number of gene
ontology nodes (n) for a class (C) as shown in Eq. 7.

ARUC =
1
n
∑n

i=1

∑

Ti − Pi

ICC (7)

On the other hand, the Mis-Information (MI) introduced by the
classifier corresponds to the total information content at a certain gene
ontology node (i,where, i = 1..n) along incorrect paths in Prediction (Pi),
but not in True (Ti) annotation graphs.

The Average Mis-Information (AMI) is calculated similarly to ARU
and may be expressed by the following equation for a certain class (C) as
shown in Eq. 8.

AMIC =
1
n
∑n

i=1

∑

Pi − Ti

ICC (8)

Finally, Smin is calculated for class (C) as in Eq. 9.

SminC = Min
(̅̅̅

(AMIC)
2
+ (ARUC)

2
√)

(9)

5.5. AUPR (area under Precision-Recall curve)

Precision-Recall curve shows the balance between the Precision and
recall for different thresholds. A higher AUPR refers to that both Pre
cision and recall are high. A high precision relates to a low false-positive
rate. Alternatively, high recall relates to a low false-negative rate. In
other words, high Precision and high recall mean that the proposed
system returns many results, and the majority of them are correct.

6. Results and biological evaluation

In the evaluation results, five different comparisons are performed to
evaluate the proposed Deep_CNN_LSTM_GO algorithm against different
models proposed in the field. Three different datasets: UniProtKB-
SwissProt’s, CAFA3 and CAFA4 were used here. In the next five sub-
sections Deep_CNN_LSTM_GO is evaluated using different These are
presented in the following five sub-sections.

6.1. UniProtKB-Swissport comparison (MF, BP, CC)

The proposed Deep_CNN_LSTM_GO is tested for the selected test-set
generated from UniProtKB-Swissprot. The selected samples in the test
set are 100 different samples, from which none are included in the
training set. The evaluation is performed against three different methods
proposed in the field, GO-Labeler (You et al., 2018a), Deep_GO (Kul
manov and Khan, 2018) and Deep_Go_Plus (Kulmanov and Hoehndorf,
2020). As shown in Fig. 12, the proposed method is compared and tested
against each one of the three sub-ontologies (MF, BP, CC) using Fmax,
Smin, and AUPR performance metrics. The comparison results of most
evaluations are summarised in Table 4 for clarity and convenience.

For Fmax, Deep_CNN_LSTM_GO performs 4th in MF and BP sub-
ontology cases with 0.407, and 0.356 scores. Deep_CNN_LSTM_GO
ranked 3rd to be outperformed by Deep_GO (Kulmanov and Khan, 2018)
in the CC sub-ontology with a score of 0.675, and almost in tie with
Deep_GO_Plus (Kulmanov and Hoehndorf, 2020) that placed the 1st with
a negligible score difference of 0.024.

For Smin, the proposed model came 4th in MF and CC sub-ontologies
with scores of 10.99 and 12.06, respectively. It ranked 2nd place to be
outperformed by Deep_Go (Kulmanov and Khan, 2018), and Deep_
Go_Plus (Kulmanov and Hoehndorf, 2020) in the BP sub-ontology with a
score of 24.41.

For the AUPR evaluation metric, Deep_CNN_LSTM_GO outperformed
Deep_GO (Kulmanov and Khan, 2018) and Go-labeler (You et al., 2018a)
in CC with a score of 0.721 and almost in a tie with Deep_Go_Plus
(Kulmanov and Hoehndorf, 2020) with a score difference of just 0.005.
It, however, ranked 3rd for the BP sub-ontology to be outperformed by
Go-labeler (You et al., 2018a) with a score of 0.306 and very close to
Deep_GO (Kulmanov and Khan, 2018) with a difference of 0.026. It
ranked 4th for the MF sub-ontology with a score of 0.280.

6.2. CAFA3 comparison against FFPred and Go-FDR (human organism)
(MF, BP, CC)

CAFA3 is used to evaluate the proposed method against FFPred
(Cozzetto et al., 2016) and Go-FDR (Gong et al., 2016). As mentioned
earlier, these techniques are in the top and most cited methods in the
field The comparison is performed using the performance metrics: Fmax,

M.E.M. Elhaj-Abdou et al.

Computational Biology and Chemistry 95 (2021) 107584

10

Precision and Recall for each subontology (MF, BP, CC) on the human
organism. Smin and AUPR not be choosen here bacuase FFpred (Coz
zetto et al., 2016) and Go-FDR (Gong et al., 2016) didn’t use them in the
evaluation. The results are shown in Fig. 13 and the comparisons are
presented in Table 4.

For Fmax, Deep_CNN_LSTM_GO outperformed FFpred (Cozzetto
et al., 2016) and Go-FDR (Gong et al., 2016) in BP and CC sub-ontologies
with scores of 0.322, and 0.45, respectively. In the MF sub-ontology
case, it ranked 3rd with a score of 0.115.

In Precision and Recall, Deep_CNN_LSTM_GO outperformed FFpred
(Cozzetto et al., 2016) and Go-FDR (Gong et al., 2016) for the BP and CC
sub-ontologies with scores of 0.401, 0.46 and 0.693, 0.455 respectively.

It came in 3rd place in the case of MF sub-ontology, with scores of 0.070,
0.325.

6.3. Performance of the proposed method for the four datasets
(UniProtKB Swissport, CAFA4, CAFA3, CAFA2) combined (MF, BP, CC)

The proposed method is compared against itself for the four test
datasets (UniProtKB Swissport CAFA2, CAFA3, and CAFA4). The per
formance metrics comparison included: Fmax, Smin, and AUPR for each
one of the three sub ontologies (MF, BP, CC). The results are shown in
Fig. 14, and the comparisons are presented in Table 4.

It is clear that the results for the Uniprot-Swissprot dataset

Fig. 12. UniProtKB Swissport performance comparison of the proposed method (Deep_CNN_LSTM_GO) with GO_Labeler, Deep_GO, and Deep_GO_Plus for the three
cases of MF, BP and CC.

Table 4
Evaluation of the proposed Deep_CNN_LSTM_GO technique against different techniques proposed in the field for different datasets.

Dataset Algorithm Performance evaluation metric
Fmax Smin AUPR
MF BP CC MF BP CC MF BP CC

UniprotKB-SwissProt GO-Labeler 0.580 0.370 0.687 5.077 15.177 5.518 0.546 0.225 0.700
Deep GO 0.449 0.398 0.667 10.722 35.085 7.861 0.409 0.328 0.696
Deep Go Plus 0.585 0.474 0.699 8.824 33.576 7.693 0.536 0.407 0.726
Deep_CNN_LSTM_GO 0.407 0.356 0.675 10.998 24.41 12.065 0.28 0.306 0.721
Organism name Fmax Smin AUPR

MF BP CC MF BP CC MF BP CC
CAFA4 Human 0.113 0.215 0.443 9.015 38.025 9.175 0.0501 0.107 0.294

Arabidopsis thaliana 0.32 0.191 0.507 6.714 32.612 11.562 0.039 0.091 0.412
Danio rerio 0.1 0.189 0.444 16.03 31.101 5.909 0.0509 0.109 0.32
Mus musculus Linnaeus 0.1 0.245 0.492 9.031 48.187 14.327 0.042 0.14 0.378
Rattus norvegicus 0.108 0.26 0.368 16.565 49.348 15.844 0.0401 0.129 0.234
Dictyostelium discoideum 0.081 0.23 0.584 5.871 44.309 12.866 0.042 0.136 0.468
Escherichia coli K-12 0.082 0.118 0.094 11.832 26.557 6.111 0.03 0.049 0.032
Schizosaccharomyces pombe 972 h 0.173 0.236 0.618 9.364 26.325 12.964 0.064 0.128 0.565
Average 0.1346 0.2105 0.44375 10.552 37.058 11.094 0.0447 0.1111 0.3378

CAFA3 Algorithm Fmax Precision Recall
MF BP CC MF BP CC MF BP CC

FFPred3 0.38 0.26 0.44 0.35 0.301 0.41 0.4 0.23 0.43
GoFDR 0.52 0.2 0.40 0.89 0.27 0.40 0.36 0.15 0.41
Deep_CNN_LSTM_GO 0.115 0.322 0.455 0.0701 0.401 0.46 0.3247 0.269 0.455

Fig. 13. CAFA3 performance comparison of the proposed method (Deep_CNN_LSTM_GO) with FFPred3 and GoFDR (human organism) for the three cases of MF, BP
and CC.

M.E.M. Elhaj-Abdou et al.

Computational Biology and Chemistry 95 (2021) 107584

11

outperformed the results for the CAFA series for Fmax and AUPR with
scores of (0.407, 0.356, 0.675) and (0.28, 0.306, 0.721), respectively.

Moreover, it is clear from the graphs of Fig. 14 for the CAFA series,
that the proposed model performs very close to the results of the three
datasets on different organisms (human for CAFA4 and CAFA 3) and
(bacteria for CAFA2). The performance metric involved is Fmax in CC
sub-ontology with (0.443, 0.450, 0.484) values. This, in effect, shows
the robustness of the proposed model accuracy in prediction. Note that
the datasets have been proposed at different times as mentioned earlier.

6.4. CAFA4 comparison against eight different organisms (MF, BP, CC)

CAFA4 is used to evaluate the proposed method’s performance for
eight different organisms using Fmax, Smin, and AUPR for all the sub
ontology cases (MF, BP, CC). As shown in Table 4 the proposed model
performed good results in different organisms,

For Fmax the proposed model performs 0.618 in CC which close to
the results in UniprotKB-SwissProt in the CC 0.675, which leads that the
proposed model can perform the same results to the other organisms or
close to it. Another note to be taken from the results in CAFA4 that the
scores for the 8 organisms are very close to each other which means that
the proposed model can perform closely the same results for different
organisms that have different amino acid sequence characteristics and
features that the human.

6.5. Hyperparameters comparisons of the proposed method with other
models (Deep_GO, Deep_Go_Plus)

To test the hyperparameters and the model design, the proposed
method is compared against the three different methods proposed in the

field: Deep_GO (Kulmanov and Khan, 2018), Deep_Go_Plus (Kulmanov
and Hoehndorf, 2020). The hyperparameters used include the number of
layers for each model, architectures used, trainable parameter sizes and
activation functions. These parameters are presented in Table 5.

Table 5 shows that the proposed model is the only approach that can
combine two different Neural Network architectures with the lowest
number of trainable parameters and model complexity.

The proposed model is the only model in the comparison that can be
trained on any standard CPU without requiring a dedicated GPU which
will be explained in the following parameters that show the difference
and the impact with reasonable numbers.

As shown in Table 6, a comparison shows the impact of the huge

Fig. 14. Performance comparison of the proposed method (Deep_CNN_LSTM_GO) using the four datasets (UniProtKB Swissport, CAFA4, CAFA3, and CAFA2) for the
three cases of MF, BP and CC.

Table 5
Hyper-parameters comparisons of the proposed Deep_CNN_LSTM_GO technique against different deep learning methods proposed in the field (Deep_Go_Plus,
Deep_GO).

Comparison parameter Deep_CNN_LSTM_GO Deep_Go_Plus Deep_GO

Number of layers 16 46 20
No of trainable parameters

(nearly number)
1 M 50 M 15 M

Trained classes size 12157 MF,
30851 BP, 4396 CC

10693 MF, 29264 BP,4034 CC 10693 MF, 29228 BP, 4033 CC

Number of output classes 4600 4774 1024
Model type used Convolutional Neural

Network+LSTM
Convolutional Neural Network Convolutional Neural Network

Combined with other methods None Similarity based method Hierarchical classification
Combined methodology None Weighted sum model None
Optimizer Adam-Optimization Adam optimization RMSProp optimizer
Activation functions used TanhSigmoid SigmoidReLU Sigmoid
Over fitting prevention tech’s One hot encodingEarly stop One hot encodingEarly stop DropoutEarly stop
Pooling layer Yes Yes Yes
Hardware used Intel Core i7–6700 CPUHD Graphics

530 GPU
. 2 X Nvidia Titan X and P6000 GPUs with
12–24 Gb of RAM.

CPU 15 GB RAM+ Nvidia GeForce GTX TITAN Z
GPU

Frame work used for the training TensorFlow 2.1& Keras TensorFlow 1.14& Keras TensorFlowKeras
Drop out No No Yes
Data types used Amino-acid sequences Amino-acid sequences Amino-acid sequences +Protien-Protien Interaction

Network (PPIN)

Table 6
Comparision between the CPU and other versions of GPU’s.

Comparison
parameter

Intel Core i7-
6700 CPU
(HD
Graphics
530)

Nvidia GTX
1060 3 GB
RAM

Nvidia
GeForce
GTX TITAN
X GPU

Nvidia
GeForce
GTX TITAN
Z GPU

Speed Rank (
https://gpu.
userbenchmark.
com/)

361st/654 74th/654 53rd/654 70th/654

CUDA Cores no data 1280 3072 5760
Core clock speed 350 MHz 1506 MHz 1000 MHz 705 MHz
Memory Limits 1 GB 2.5 GB 12 GB 12 GB
Floating-point

performance
403.2 gflops 4275 gflops 6691 gflops 2 × 5046

gflops
Memory clock

speed
Up to
2133 MHz

8000 MHz 7.0 GB/s 7.0 GB/s

M.E.M. Elhaj-Abdou et al.

Computational Biology and Chemistry 95 (2021) 107584

12

difference between the employed CPU and the NVIDIA GTX1060–3 GB-
RAM GPU which is considered one of the simplest GPUs in the market. In
addition, the comparison includes other upgraded GPU’s versions.

The comparison in Table 6 shows that the employed CPU in this
research is nearly 4 times slower than the GTX1060 3 GB in terms of
speed parameter (https://gpu.userbenchmark.com/). While the Nvidia
GeForce GTX TITAN Z GPU is 6 times slower, and 7 times slower than
Nvidia GeForce GTX TITAN X GPU.

For the CUDA cores it’s clear that the employed CPU has no CUDA
cores which means no parallel processes will occur during the training,
while the Nvidia GTX 1060 has 1280, Nvidia GeForce GTX TITAN X GPU
has 3072, and Nvidia GeForce GTX TITAN Z GPU has 5760. The more
CUDA cores in the systems, the more parallel processes occur, therefore
the computation time decrease.

For the Memory limit, The employed CPU has 1 GB memory, while
2.5, 12, 12 Memory limits for Nvidia GTX 1060, Nvidia GeForce GTX
TITAN X, Nvidia GeForce GTX TITAN Z GPU respectively. The more
Memory, the more tensors can be installed and concatenated, and the
trainable parameters will be increased. This leads to the ability to insert
more layers with large sizes and kernels in the Neural Networks.
Therefore the Neural Networks become very deep.

Core clock speed represents how fast a single core can perform a
single task. Its noticed in Table 6 the employed CPU is nearly 4 times
slower than the GTX 1060, and 3 times slower than GTX TITAN X, and
two times slower than GTX TITAN Z.

Floating-point arithmetic is needed for very large or small real
numbers that are calculated in multiple matrices. The more floating-
point operations per second, the faster the model to finish the compu
tations. As shown in Table 6 the used CPU can finish nearly 400 giga-
flops per second which means ten times slower than GTX 1060 that
can finish 4275 giga-flops per second. While 15 times slower than GTX
TITAN X and 14 times than GTX TITAN Z.

The proposed model is scalable and expandable. In other words, the
Amino-Acid input sequence length can be increased as well as the size of
the GO to be predicted. Therefore, the number of layers, kernel, and
filter sizes can be extended and increased, producing remarkable results
with the lowest complexity compared to other methods.

7. Discussion

In the previous section, we discussed the five different evaluation
methods done using the different datasets as well as different
parameters.

First, the proposed model is robust, it was compared using Uni
ProtKB-SwissProt’s, and CAFA-series datasets, which are considered as
the main benchmark datasets for protein function prediction evaluation.
To achieve a solid comparison, we used multiple datasets which is not
the case in most of the recent papers in bioinformatics for protein
function prediction contributions as discussed in the related work sec
tion. In addition, this research uses three different evaluation metrics for
each dataset during the comparison, in order to ensure and prove that
the proposed model outperformed the others using different methods.

Second, the proposed model is scalable, as it combines two different
neural network architectures, CNN and LSTM, to perform the same task,
taking advantage of both architectures to overcome the limitations of
using one of them alone. This enhanced the results as shown in the
previous section. This integration gives the ability to the proposed model
to be combined with other Neural Networks architectures for further
enhancements. This could make the proposed model to be considered a
state-of-the-art approach in the near future.

Third, the proposed hyper model is dynamic. Can be applied to other
different applications in protein function prediction. The reason behind
that, it integrates two different architectures, CNN and LSTM, which
makes it easier to apply additional modifications to be used in different
such as protein family classification, 3D structure prediction, protein-
protein interaction networks and more, using different data types,

images or sequences or both.
Fourth the proposed model is compact, having the lowest model

complexity, trainable parameters and hardware support as mentioned
and discussed earlier. Deep_CNN_LSTM_GO outperformed the other
methods with this regard, which likely would give the proposed model
the priority in the future to be adopted from the research community
and institutions for future research.

8. Conclusion

The proposed Deep_CNN_LSTM_GO is an accurate model for protein
function prediction. This paper presented the proposed method and
compared it to different methods proposed in the field in terms of several
performance evaluation criteria: Precision, recall, Fmax, Smin, AUPR,
hardware requirements, model complexity, etc .Deep_CNN_LSTM_GO
was tested using different organisms from different datasets (UniProt-
SwissProt’s, CAFA2, CAFA3, and CAFA4).

The novality of the proposed method combined the functionalities of
CNN and LSTM neural network models in order to reduce the number of
layers in the deep learning model. The amount of computations required
was also significantly reduced by the use of 1D-CNN. This resulted in the
fact that the proposed Deep_CNN_LSTM_GO was trained on any standard
CPU without the need for a dedicated GPU. We predict that our
contribution will lead to rapid advances in the bioinformatics field as it
will allow researchers without expensive hardware resources to explore
and advance this field.

Tabulated test results showed that the proposed Deep_
CNN_LSTM_GO outperformed different methods proposed in the field in
sub-ontologies and comparable results for the others using different test
sets. The proposed model was able to annotate 4600 annotations for a
single unknown protein in minutes.

Deep_CNN_LSTM_GO can be used with minor modifications, to be
extended and trained for different data sources such as protein 3D
structures or a combination of two different data sources to be applied
on different tasks such as phenotype diseases prediction from amino-
acid sequences. This is the subject of another publication.

References

Abadi M., Barham P., Chen J., Chen Z., Davis A., Dean J., Devin M., Ghemawat S., Irving
G., Isard M., Kudlur M. Tensorflow: A system for large-scale machine learning.
In12th {USENIX} symposium on operating systems design and implementation
({OSDI} 16) 2016 (pp. 265–283).

Abdel-Hamid, O., Deng, L., Dong Yu, 2013. “Exploring convolutional neural network
structures and optimization techniques for speech recognition”. Interspeech.

Alejandro, A., Schäffer, Yuri, I., Wolf, Chris, P., Ponting, Eugene, V., Koonin, L., Aravind,
Stephen, F.Altschul, 1999. IMPALA: matching a protein sequence against a collection
of PSI-BLAST-constructed position-specific score matrices. Bioinformatics 15 (12),
1000–1011. https://doi.org/10.1093/bioinformatics/15.12.1000.

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., 1990. “Basic local
alignment search tool”. J. Mol. Biol. 215, 403–410.

Altschul, Stephen F., Madden, Thomas L., Schäffer, Alejandro A., Zhang, Jinghui,
Zhang, Zheng, Miller, Webb, Lipman, David J., 1997. Gapped BLAST and PSI-BLAST:
a new generation of protein database search programs. Nucleic Acids Res. 25 (17),
3389–3402. https://doi.org/10.1093/nar/25.17.3389.

Tensorflow 2015, Anonhttps://www.tensorflow.org/.
Anon https://gpu.userbenchmark.com/.
Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P.,

Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L.,
Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M.,
Sherlock, G., 2000. Gene ontology: tool for the unification of biology. Nat. Genet 25,
25–29. https://doi.org/10.1038/75556.

Berman, Helen M., Westbrook, John, Feng, Zukang, Gilliland, Gary, Bhat, T.N.,
Weissig, Helge, Shindyalov, Ilya N., Bourne, Philip E., 2000. The protein data bank.
Nucleic Acids Res. 28 (1), 235–242. https://doi.org/10.1093/nar/28.1.235.

Bottou, L.éon, Frank, E.Curtis, Nocedal, Jorge, 2018. “Optimization methods for large-
scale machine learning”. SIAM Rev. 60, 223–311.

Chollet, François, 2017. Xception: Deep learning with depthwise separable convolutions,
Proceedings of the IEEE conference on computer vision and pattern recognition,
2017.

Clark, W.T., Radivojac, P., 2013. Information-theoretic evaluation of predicted
ontological annotations. Bioinformatics 29 (13), i53–i61.

M.E.M. Elhaj-Abdou et al.

http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref1
http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref1
https://doi.org/10.1093/bioinformatics/15.12.1000
http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref3
http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref3
https://doi.org/10.1093/nar/25.17.3389
https://www.tensorflow.org/
https://gpu.userbenchmark.com/
https://doi.org/10.1038/75556
https://doi.org/10.1093/nar/28.1.235
http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref7
http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref7
http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref8
http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref8

Computational Biology and Chemistry 95 (2021) 107584

13

Clark, Wyatt T., Radivojac, Predrag, 2011. “Analysis of protein function and its
prediction from amino acid sequence”. Protein. Struct. Funct. Bioinform. 79 (7),
2086–2096.

Cozzetto, D., Minneci, F., Currant, H., Jones, D.T., 2016. FFPred 3: feature-based
function prediction for all Gene Ontology domains. Sci. Rep. 6, 31865. https://doi.
org/10.1038/srep31865.

Duchi, J., Hazan, E., Singer, Y., 2011. Adaptive subgradient methods for online learning
and stochastic optimization. J. Mach. Learn. Res. 12, 7.

Fa, R., Cozzetto, D., Wan, C., Jones, D.T., 2018. Predicting human protein function with
multi-task deep neural networks. PLOS ONE 13 (6), 0198216. https://doi.org/
10.1371/journal.pone.0198216.

Fischer, Markus, Pleiss, J.ürgen, 2003. “The lipase engineering database: a navigation
and analysis tool for protein families”. Nucleic Acids Res. 31 (1), 319–321.

A. Giusti, D.C. Cireşan, J. Masci, L.M. Gambardella, J. Schmidhuber, 2013. Fast image
scanning with deep max-pooling convolutional neural networks, 2013 IEEE
International Conference on Image Processing, Melbourne, VIC, pp. 4034–4038, doi:
10.1109/ICIP.2013.6738831.

Gong, Qingtian, Ning, Wei, Tian, Weidong, 2016. “GoFDR: a sequence alignment based
method for predicting protein functions”. Methods 93, 3–14.

Goodfellow, Ian, Bengio, Yoshua, Courville, Aaron, Goodfellow, 2016. Deep Learning.
MIT Press. http://www.deeplearningbook.org.

GPCRdb in 2021: integrating GPCR sequence, structure and function Kooistra AJ,
Mordalski S, Pándy-Szekeres G, Esguerra M, Mamyrbekov A, Munk C, Keserű GM,
Gloriam DE Nucleic Acids Research, 2020, X:X.

Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, G.,
Cai, J., Chen, T., 2018. Recent advances in convolutional neural networks. Pattern
Recognit. 77, 354–377. May 1.

Hochreiter, Sepp, Schmidhuber, J.ürgen, 1997. “Long short-term memory”. Neural
Comput. 9, 1735–1780.

Jiang, Y., Oron, T.R., Clark, W.T., Bankapur, A.R., D’Andrea, D., Lepore, R., Funk, C.S.,
Kahanda, I., Verspoor, K.M., Ben-Hur, A., Koo da, C.E., Penfold-Brown, D.,
Shasha, D., Youngs, N., Bonneau, R., Lin, A., Sahraeian, S.M., Martelli, P.L.,
Profiti, G., Casadio, R., Cao, R., Zhong, Z., Cheng, J., Altenhoff, A., Skunca, N.,
Dessimoz, C., Dogan, T., Hakala, K., Kaewphan, S., Mehryary, F., Salakoski, T.,
Ginter, F., Fang, H., Smithers, B., Oates, M., Gough, J., Törönen, P., Koskinen, P.,
Holm, L., Chen, C.T., Hsu, W.L., Bryson, K., Cozzetto, D., Minneci, F., Jones, D.T.,
Chapman, S., Bkc, D., Khan, I.K., Kihara, D., Ofer, D., Rappoport, N., Stern, A.,
Cibrian-Uhalte, E., Denny, P., Foulger, R.E., Hieta, R., Legge, D., Lovering, R.C.,
Magrane, M., Melidoni, A.N., Mutowo-Meullenet, P., Pichler, K., Shypitsyna, A.,
Li, B., Zakeri, P., ElShal, S., Tranchevent, L.C., Das, S., Dawson, N.L., Lee, D., Lees, J.
G., Sillitoe, I., Bhat, P., Nepusz, T., Romero, A.E., Sasidharan, R., Yang, H.,
Paccanaro, A., Gillis, J., Sedeño-Cortés, A.E., Pavlidis, P., Feng, S., Cejuela, J.M.,
Goldberg, T., Hamp, T., Richter, L., Salamov, A., Gabaldon, T., Marcet-Houben, M.,
Supek, F., Gong, Q., Ning, W., Zhou, Y., Tian, W., Falda, M., Fontana, P., Lavezzo, E.,
Toppo, S., Ferrari, C., Giollo, M., Piovesan, D., Tosatto, S.C., Del Pozo, A.,
Fernández, J.M., Maietta, P., Valencia, A., Tress, M.L., Benso, A., Di Carlo, S.,
Politano, G., Savino, A., Rehman, H.U., Re, M., Mesiti, M., Valentini, G., Bargsten, J.
W., van Dijk, A.D., Gemovic, B., Glisic, S., Perovic, V., Veljkovic, V., Veljkovic, N.,
Almeida-E-Silva, D.C., Vencio, R.Z., Sharan, M., Vogel, J., Kansakar, L., Zhang, S.,
Vucetic, S., Wang, Z., Sternberg, M.J., Wass, M.N., Huntley, R.P., Martin, M.J.,
O’Donovan, C., Robinson, P.N., Moreau, Y., Tramontano, A., Babbitt, P.C.,
Brenner, S.E., Linial, M., Orengo, C.A., Rost, B., Greene, C.S., Mooney, S.D.,
Friedberg, I., Radivojac, P., 2016. An expanded evaluation of protein function
prediction methods shows an improvement in accuracy. Genome Biol. 17, 184.
https://doi.org/10.1186/s13059-016-1037-6.

Jonghoon, Jin, Dundar, Aysegul, Culurciello, Eugenio, 2014. Flattened convolutional
neural networks for feedforward acceleration, 1412, 5474.

José Juan Almagro Armenteros, Casper Kaae S.ønderby, Søren Kaae Sønderby, Henrik
Nielsen, Winther, Ole, 2017. DeepLoc: prediction of protein subcellular localization
using deep learning. Bioinformatics 33 (21), 3387–3395. https://doi.org/10.1093/
bioinformatics/btx431.

Kawulok, J., Deorowicz, S., 2015. CoMeta: classification of metagenomes using k-mers.
PloS One 10 (4), e0121453.

Keedwell, Edward, Narayanan, Ajit, 2005. Intelligent Bioinformatics: The Application of
Artificial Intelligence Techniques to Bioinformatics Problems. John Wiley & Sons.

Kingma D.P., Ba J. Adam: A method for stochastic optimization. arXiv:1412.6980. 2014
Dec 22.

Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M., Inman, D.J., 2019. 1D
convolutional neural networks and applications: a survey, 1905, 03554.

Krizhevsky, Alex, Sutskever, Ilya, Geoffrey, E.Hinton, 2017. ImageNet classification with
deep convolutional neural networks. Commun. ACM 60 (6), 84–90. https://doi.org/
10.1145/3065386.

Kulmanov, Maxat, Hoehndorf, Robert, 2020. Deep_Go_Plus: improved protein function
prediction from sequence. Bioinformatics 36 (2), 422–429. https://doi.org/10.1093/
bioinformatics/btz595.

Kulmanov, Maxat, Khan, Mohammed Asif, 2018. Robert Hoehndorf, Deep_GO: predicting
protein functions from sequence and interactions using a deep ontology-aware
classifier. Bioinformatics 34 (4), 660–668. https://doi.org/10.1093/bioinformatics/
btx624.

M.M. Lau, K.H. Lim, 2017. Investigation of activation functions in deep belief network,
2017 2nd International Conference on Control and Robotics Engineering (ICCRE),
Bangkok, pp. 201–206, doi: 10.1109/ICCRE.2017.7935070.

Li, Jinong, Zhang, Zhen, Rosenzweig, Jason, Wang, Young Y., Chan, Daniel W., 2002.
Proteomics and bioinformatics approaches for identification of serum biomarkers to
detect breast cancer. Clin. Chem. 48 (8), 1296–1304. https://doi.org/10.1093/
clinchem/48.8.1296.

Lindsay, M., 2003. Target discovery. Nat. Rev. Drug Discov. 2, 831–838. https://doi.org/
10.1038/nrd1202.

Minneci, F., Piovesan, D., Cozzetto, D., Jones, D.T., 2013. FFPred 2.0: improved
homology-independent prediction of gene ontology terms for eukaryotic protein
sequences. PLOS ONE 8 (5), 63754. https://doi.org/10.1371/journal.pone.0063754.

Mitchell, Alex, Chang, Hsin-Yu, Daugherty, Louise, Fraser, Matthew, Hunter, Sarah,
Lopez, Rodrigo, McAnulla, Craig, McMenamin, Conor, Nuka, Gift, Pesseat, Sebastien,
Sangrador-Vegas, Amaia, Scheremetjew, Maxim, Rato, Claudia, Yong, Siew-Yit,
Bateman, Alex, Punta, Marco, Attwood, Teresa K., Sigrist, Christian J.A.,
Redaschi, Nicole, Rivoire, Catherine, Xenarios, Ioannis, Kahn, Daniel,
Guyot, Dominique, Bork, Peer, Letunic, Ivica, Gough, Julian, Oates, Matt,
Haft, Daniel, Huang, Hongzhan, Natale, Darren A., Wu, Cathy H., Orengo, Christine,
Sillitoe, Ian, Mi, Huaiyu, Thomas, Paul D., Finn, Robert D., 2015. The InterPro
protein families database: the classification resource after 15 years. Nucleic Acids
Res. 43 (D1), D213–D221. https://doi.org/10.1093/nar/gku1243.

Murzin, A.G., Brenner, S.E., Hubbard, T., Chothia, C., 1995. “SCOP: a structural
classification of proteins database for the investigation of sequences and structures”.
J. Mol. Biol. 247 (4), 536–540.

Nauman, M., Ur Rehman, H., Politano, G., Benso, A., 2019. Beyond homology transfer:
deep learning for automated annotation of proteins. J. Grid Comput. 17, 225–237.
https://doi.org/10.1007/s10723-018-9450-6.

Ofer, Dan, Linial, Michal, 2015. ProFET: Feature engineering captures high-level protein
functions. Bioinformatics 31 (21), 3429–3436. https://doi.org/10.1093/
bioinformatics/btv345.

O’Shea, Keiron, Nash, Ryan, 2015. “An introduction to convolutional neural networks”,
1511, 08458.

Radivojac, P., Clark, W.T., Oron, T.R., Schnoes, A.M., Wittkop, T., Sokolov, A., Graim, K.,
Funk, C., Verspoor, K., Ben-Hur, A., Pandey, G., Yunes, J.M., Talwalkar, A.S.,
Repo, S., Souza, M.L., Piovesan, D., Casadio, R., Wang, Z., Cheng, J., Fang, H.,
Gough, J., Koskinen, P., Törönen, P., Nokso-Koivisto, J., Holm, L., Cozzetto, D.,
Buchan, D.W., Bryson, K., Jones, D.T., Limaye, B., Inamdar, H., Datta, A., Manjari, S.
K., Joshi, R., Chitale, M., Kihara, D., Lisewski, A.M., Erdin, S., Venner, E.,
Lichtarge, O., Rentzsch, R., Yang, H., Romero, A.E., Bhat, P., Paccanaro, A.,
Hamp, T., Kaßner, R., Seemayer, S., Vicedo, E., Schaefer, C., Achten, D., Auer, F.,
Boehm, A., Braun, T., Hecht, M., Heron, M., Hönigschmid, P., Hopf, T.A.,
Kaufmann, S., Kiening, M., Krompass, D., Landerer, C., Mahlich, Y., Roos, M.,
Björne, J., Salakoski, T., Wong, A., Shatkay, H., Gatzmann, F., Sommer, I., Wass, M.
N., Sternberg, M.J., Škunca, N., Supek, F., Bošnjak, M., Panov, P., Džeroski, S.,
Šmuc, T., Kourmpetis, Y.A., van Dijk, A.D., ter Braak, C.J., Zhou, Y., Gong, Q.,
Dong, X., Tian, W., Falda, M., Fontana, P., Lavezzo, E., Di Camillo, B., Toppo, S.,
Lan, L., Djuric, N., Guo, Y., Vucetic, S., Bairoch, A., Linial, M., Babbitt, P.C.,
Brenner, S.E., Orengo, C., Rost, B., Mooney, S.D., Friedberg, I., 2013. A large-scale
evaluation of computational protein function prediction. Nat. Methods 10, 221–227.
https://doi.org/10.1038/nmeth.2340.

Rodríguez, P., Bautista, M.A., Gonzàlez, J., Escalera, S., 2018. “Beyond one-hot encoding:
Lower dimensional target embedding”. Image Vis. Comput. 75, 21–31.

Ruder S. An overview of gradient descent optimization algorithms. arXiv:1609.04747.
2016 Sep 15.

Saeidnia, S., Manayi, A., Abdollahi, M., 2015. From in vitro experiments to in vivo and
clinical studies; pros and cons. Curr. Drug Disco Technol. 12 (4), 218–224. https://
doi.org/10.2174/1570163813666160114093140.

Saier Jr., Milton H., Tran, Can V., Barabote, Ravi D., 2006. TCDB: the transporter
classification database for membrane transport protein analyses and information.
Nucleic Acids Res. 34, D181–D186. https://doi.org/10.1093/nar/gkj001.

T.N. Sainath, A. Mohamed, B. Kingsbury, B. Ramabhadran, Deep convolutional neural
networks for LVCSR, 2013 IEEE International Conference on Acoustics, Speech and
Signal Processing, Vancouver, BC, 2013, pp. 8614–8618, doi: 10.1109/ICASSP.201
3.6639347.

Sak H., Senior AW, Beaufays F., Long short-term memory recurrent neural network
architectures for large scale acoustic modeling.

Sharma S., 2017. Activation functions in neural networks towards data science, 2017 Sep
6.

Sherstinsky, A., 2020. Fundamentals of recurrent neural network (rnn) and long short-
term Memory (lstm) network. Phys. D Nonlinear Phenom. 404, 132306. Mar 1.

Shorten, C., Khoshgoftaar, T.M., 2019. A survey on image data augmentation for deep
learning. J. Big Data 6, 60. https://doi.org/10.1186/s40537-019-0197-0.

Stehman, Stephen V., 1997. “Selecting and interpreting measures of thematic
classification accuracy”. Remote Sens. Environ. 62, 77–89.

Szklarczyk, D., Morris, J.H., Cook, H., Kuhn, M., Wyder, S., Simonovic, M., Santos, A.,
Doncheva, N.T., Roth, A., Bork, P., Jensen, L.J., von Mering, C., 2017. “The STRING
database in 2017: quality-controlled protein–protein association networks, made
broadly accessible”. Nucleic Acids Res. 45, 362 gkw937.

Taju, Semmy Wellem, Nguyen, Trinh-Trung-Duong, Le, Nguyen-Quoc-Khanh,
Kusuma, Rosdyana Mangir Irawan, Ou, Yu-Yen, 2018. DeepEfflux: a 2D
convolutional neural network model for identifying families of efflux proteins in
transporters. Bioinformatics 34 (18), 3111–3117. https://doi.org/10.1093/
bioinformatics/bty302.

Tatusov, R.L., Galperin, M.Y., Natale, D.A., Koonin, E.V., 2000. “The COG database: a
tool for genome-scale analysis of protein functions and evolution”. Nucleic Acids
Res. 28 (1), 33–36.

The UniProt Consortium, 2019. UniProt: a worldwide hub of protein knowledge. Nucleic
Acids Res. 47 (D1), D506–D515. https://doi.org/10.1093/nar/gky1049.

Vroling, B., Thorne, D., McDermott, P., Joosten, H.J., Attwood, T.K., Pettifer, S.,
Vriend, G., 2012. NucleaRDB: information system for nuclear receptors (Database
issue). Nucleic Acids Res. 40, D377–D380. https://doi.org/10.1093/nar/gkr960.

M.E.M. Elhaj-Abdou et al.

http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref9
http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref9
http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref9
https://doi.org/10.1038/srep31865
https://doi.org/10.1038/srep31865
http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref11
http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref11
https://doi.org/10.1371/journal.pone.0198216
https://doi.org/10.1371/journal.pone.0198216
http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref13
http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref13
http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref14
http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref14
http://www.deeplearningbook.org
http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref16
http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref16
http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref16
http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref17
http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref17
https://doi.org/10.1186/s13059-016-1037-6
http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref19
http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref19
https://doi.org/10.1093/bioinformatics/btx431
https://doi.org/10.1093/bioinformatics/btx431
http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref21
http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref21
http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref22
http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref22
http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref23
http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref23
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1093/bioinformatics/btz595
https://doi.org/10.1093/bioinformatics/btz595
https://doi.org/10.1093/bioinformatics/btx624
https://doi.org/10.1093/bioinformatics/btx624
https://doi.org/10.1093/clinchem/48.8.1296
https://doi.org/10.1093/clinchem/48.8.1296
https://doi.org/10.1038/nrd1202
https://doi.org/10.1038/nrd1202
https://doi.org/10.1371/journal.pone.0063754
https://doi.org/10.1093/nar/gku1243
http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref31
http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref31
http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref31
https://doi.org/10.1007/s10723-018-9450-6
https://doi.org/10.1093/bioinformatics/btv345
https://doi.org/10.1093/bioinformatics/btv345
http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref34
http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref34
https://doi.org/10.1038/nmeth.2340
http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref36
http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref36
https://doi.org/10.2174/1570163813666160114093140
https://doi.org/10.2174/1570163813666160114093140
https://doi.org/10.1093/nar/gkj001
http://10.1109/ICASSP.2013.6639347
http://10.1109/ICASSP.2013.6639347
http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref39
http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref39
https://doi.org/10.1186/s40537-019-0197-0
http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref41
http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref41
http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref42
http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref42
http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref42
http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref42
https://doi.org/10.1093/bioinformatics/bty302
https://doi.org/10.1093/bioinformatics/bty302
http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref44
http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref44
http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref44
https://doi.org/10.1093/nar/gky1049
https://doi.org/10.1093/nar/gkr960

Computational Biology and Chemistry 95 (2021) 107584

14

Wei, L., Ding, Y., Su, R., Tang, J., Zou, Q., 2018. “Prediction of human protein subcellular
localization using deep learning”. J. Parallel Distrib. Comput. 117, 212–217.

Wu, Cathy H., Yeh, Lai-Su.L., Huang, Hongzhan, Arminski, Leslie, Castro-Alvear, Jorge,
Chen, Yongxing, Hu, Zhangzhi, Kourtesis, Panagiotis, Ledley, Robert S., Suzek, Baris
E., Vinayaka, C.R., Zhang, Jian, Barker, Winona C., 2003. The protein information
resource. Nucleic Acids Res. 31 (1), 345–347. https://doi.org/10.1093/nar/gkg040.

You, Ronghui, Zhang, Zihan, Xiong, Yi, Sun, Fengzhu, Mamitsuka, Hiroshi,
Zhu, Shanfeng, 2018a. GOLabeler: improving sequence-based large-scale protein
function prediction by learning to rank. Bioinformatics 34 (14), 2465–2473. https://
doi.org/10.1093/bioinformatics/bty130.

You, Ronghui, Huang, Xiaodi, Zhu, Shanfeng, 2018b. “DeepText2Go: improving large-
scale protein function prediction with deep semantic text representation”. Methods
145, 82–90.

Yu, G., Rangwala, H., Domeniconi, C., Zhang, G., Zhang, Z., 2015. “Predicting protein
function using multiple kernels”. IEEE/ACM Trans. Comput. Biol. Bioinform. 12 (1),
219–233. https://doi.org/10.1109/TCBB.2014.2351821.

Yunes, Jeffrey M., Babbitt, Patricia C., 2019. Effusion: prediction of protein function
from sequence similarity networks. Bioinformatics 35 (3), 442–451. https://doi.org/
10.1093/bioinformatics/bty672.

Zhou, N., Jiang, Y., Bergquist, T.R., Lee, A.J., Kacsoh, B.Z., Crocker, A.W., Lewis, K.A.,
Georghiou, G., Nguyen, H.N., Hamid, M.N., Davis, L., Dogan, T., Atalay, V.,
Rifaioglu, A.S., Dalkıran, A., Cetin Atalay, R., Zhang, C., Hurto, R.L., Freddolino, P.
L., Zhang, Y., Bhat, P., Supek, F., Fernández, J.M., Gemovic, B., Perovic, V.R.,

Davidović, R.S., Sumonja, N., Veljkovic, N., Asgari, E., Mofrad, M., Profiti, G.,
Savojardo, C., Martelli, P.L., Casadio, R., Boecker, F., Schoof, H., Kahanda, I.,
Thurlby, N., McHardy, A.C., Renaux, A., Saidi, R., Gough, J., Freitas, A.A.,
Antczak, M., Fabris, F., Wass, M.N., Hou, J., Cheng, J., Wang, Z., Romero, A.E.,
Paccanaro, A., Yang, H., Goldberg, T., Zhao, C., Holm, L., Törönen, P., Medlar, A.J.,
Zosa, E., Borukhov, I., Novikov, I., Wilkins, A., Lichtarge, O., Chi, P.H., Tseng, W.C.,
Linial, M., Rose, P.W., Dessimoz, C., Vidulin, V., Dzeroski, S., Sillitoe, I., Das, S.,
Lees, J.G., Jones, D.T., Wan, C., Cozzetto, D., Fa, R., Torres, M., Warwick
Vesztrocy, A., Rodriguez, J.M., Tress, M.L., Frasca, M., Notaro, M., Grossi, G.,
Petrini, A., Re, M., Valentini, G., Mesiti, M., Roche, D.B., Reeb, J., Ritchie, D.W.,
Aridhi, S., Alborzi, S.Z., Devignes, M.D., Koo, D., Bonneau, R., Gligorijević, V.,
Barot, M., Fang, H., Toppo, S., Lavezzo, E., Falda, M., Berselli, M., Tosatto, S.,
Carraro, M., Piovesan, D., Ur Rehman, H., Mao, Q., Zhang, S., Vucetic, S., Black, G.S.,
Jo, D., Suh, E., Dayton, J.B., Larsen, D.J., Omdahl, A.R., McGuffin, L.J.,
Brackenridge, D.A., Babbitt, P.C., Yunes, J.M., Fontana, P., Zhang, F., Zhu, S.,
You, R., Zhang, Z., Dai, S., Yao, S., Tian, W., Cao, R., Chandler, C., Amezola, M.,
Johnson, D., Chang, J.M., Liao, W.H., Liu, Y.W., Pascarelli, S., Frank, Y.,
Hoehndorf, R., Kulmanov, M., Boudellioua, I., Politano, G., Di Carlo, S., Benso, A.,
Hakala, K., Ginter, F., Mehryary, F., Kaewphan, S., Björne, J., Moen, H.,
Tolvanen, M., Salakoski, T., 2019. The CAFA challenge reports improved protein
function prediction and new functional annotations for hundreds of genes through
experimental screens. Genome Biol. 20, 244. https://doi.org/10.1186/s13059-019-
1835-8.

M.E.M. Elhaj-Abdou et al.

http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref47
http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref47
https://doi.org/10.1093/nar/gkg040
https://doi.org/10.1093/bioinformatics/bty130
https://doi.org/10.1093/bioinformatics/bty130
http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref50
http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref50
http://refhub.elsevier.com/S1476-9271(21)00154-7/sbref50
https://doi.org/10.1109/TCBB.2014.2351821
https://doi.org/10.1093/bioinformatics/bty672
https://doi.org/10.1093/bioinformatics/bty672
https://doi.org/10.1186/s13059-019-1835-8
https://doi.org/10.1186/s13059-019-1835-8

	Deep_CNN_LSTM_GO: Protein function prediction from amino-acid sequences
	1 Introduction
	2 Related work
	3 materials and methods
	3.1 Training and test datasets
	3.1.1 UniProtKB dataset
	3.1.2 CAFA dataset

	3.2 Predicted (target) functions
	3.3 Preprocessing technique
	3.4 Neural networks building blocks
	3.4.1 Pooling
	3.4.2 Activation functions
	3.4.3 Flatten layer
	3.4.4 Convolutional Neural Network (CNN)
	3.4.5 Long-Short Term Memory (LSTM)

	4 proposed Deep_CNN_LSTM_GO model
	5 Evaluation metrics
	5.1 Precision
	5.2 Recall
	5.3 Fmax
	5.4 Smin
	5.5 AUPR (area under Precision-Recall curve)

	6 Results and biological evaluation
	6.1 UniProtKB-Swissport comparison (MF, BP, CC)
	6.2 CAFA3 comparison against FFPred and Go-FDR (human organism) (MF, BP, CC)
	6.3 Performance of the proposed method for the four datasets (UniProtKB Swissport, CAFA4, CAFA3, CAFA2) combined (MF, BP, CC)
	6.4 CAFA4 comparison against eight different organisms (MF, BP, CC)
	6.5 Hyperparameters comparisons of the proposed method with other models (Deep_GO, Deep_Go_Plus)

	7 Discussion
	8 Conclusion
	References

