
Computational Biology and Chemistry 95 (2021) 107584

Available online 24 September 2021
1476-9271/© 2021 Elsevier Ltd. All rights reserved.

Research Article 

Deep_CNN_LSTM_GO: Protein function prediction from 
amino-acid sequences 

Mohamed E.M. Elhaj-Abdou a,*, Hassan El-Dib a, Amr El-Helw a, Mohamed El-Habrouk b 

a Faculty of Engineering, Arab Academy for Science and Technology and Maritime Transport, Alexandria, Egypt 
b Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt   

A R T I C L E  I N F O   

Keywords: 
Deep learning 
Gene ontology 
CNN 
LSTM 
Protein function prediction 
MF 
BP 
CC 
UniProt-SwissProt 
CAFA 

A B S T R A C T   

Protein amino acid sequences can be used to determine the functions of the protein. However, determining the 
function of a single protein requires many resources and a tremendous amount of time. Computational Intelli-
gence methods such as Deep learning have been shown to predict the proteins’ functions. This paper proposes a 
hybrid deep neural network model to predict an unknown protein’s functions from sequences. The proposed 
model is named Deep_CNN_LSTM_GO. Deep_CNN_LSTM_GO is an Integration between Convolutional Neural 
network (CNN) and Long Short-Term Memory (LSTM) Neural Network to learn features from amino acid se-
quences and outputs the three different Gene Ontology (GO). The gene ontology represents the protein functions 
in the three sub-ontologies: Molecular Functions (MF), Biological Process (BP), and Cellular Component (CC). 
The proposed model has been trained and tested using UniProt-SwissProt’s dataset. Another test has been done 
using Computational Assessment of Function Annotation (CAFA) on the three sub-ontologies. The proposed 
model outperforms different methods proposed in the field with better performance using three different eval-
uation metrics (Fmax, Smin, and AUPR) in the three sub-ontologies (MF, BP, CC).   

1. Introduction 

In the bioinformatics field, one of the most essential and critical 
motifs is proteins (Li et al., 2002). Proteins provide many essential 
functions and responsibilities in the organism’s body, such as DNA 
structure, muscle building, antibody support, immunity against dis-
eases, and much more. Their function characterizations and annotations 
serve many sensitive biological, computational applications, such as 
new drug discovery that could help in global pandemics like HIV/Aids, 
Cholera, COVID-19 viruses, and many more uses. Protein function pre-
diction can help find the relations between such genes and phenotypes 
or genetic diseases by understanding the mechanisms, patterns, and 
relations between these diseases and the genes located in that organism 
(Lindsay, 2003). There are massive, exponentially increasing needs for 
discovering these functions for such applications. However, traditional 
experimental procedures for discovering these functions in the genomics 
laboratories are very slow compared to these needs (Saeidnia et al., 
2015). 

On the other hand, computational-intelligent methods and algo-
rithms were proposed and introduced to predict the proteins’ function 

using amino acid sequences faster. These use the complete information 
and a plethora of protein functions that have been published in bio-
logical research. This biological information is digitized and saved in 
online public databases that can be accessed and downloaded without 
limitations. 

Protein function prediction has been a hot topic application in bio-
informatics for the last two decades. Providing information and under-
standing of protein functions can increase the speed of drug discovery. 
This is possible due to many factors (Keedwell and Narayanan, 2005), 
such as the diversity of the computational-intelligent techniques, the 
possibility of merging between them to overcome the computational 
bottlenecks, fast and accurate predictions, in addition, the strong 
hardware support. 

Protein function prediction methods can be classified according to 
the biological information data types, such as protein amino acid se-
quences, 3D structure, protein folding information, protein-protein 
interaction networks, gene expression, protein family, integration be-
tween these various sources, and more. As mentioned earlier, many 
databases have been proposed and published online to describe the 
biological information of proteins in its digital format suitable for 
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computation. 
UniProtKB (The UniProt Consortium, 2019) database was proposed 

for amino acid sequences. It is an extensive database published to pro-
vide rich annotations and information on proteins and their functions. 

Many global initiatives have been provided and proposed in order to 
find the unknown functions for a known sequence such as Critical 
Assessment of Function Annotations (CAFA) challenges (Radivojac 
et al., 2013; Jiang et al., 2016; Zhou et al., 2019). Full details for Uni-
ProtKB and CAFA will be further explored and discussed in Section III. 

Protein Information Resource (PIR) (Wu et al., 2003) database is an 
online public resource that provides information for both genome and 
protein levels to represent the sequence information for each one of 
them. 

For 3D structure protein representation, Protein Data Bank (PDB) 
(Berman et al., 2000), Nucleic acid Receptors DataBase (NucleaRDB) 
(Vroling et al., 2012), and Structural Classification Of Proteins (SCOP) 
(Murzin et al., 1995) databases are available. PDB and NucleaRDB deal 
with 3D shapes of both proteins and nucleic acids. NucleaRDB provides 
2D and 3D structural information, alignment, the chromosomal location 
of nuclear receptor genes, potential Nuclear Localization Signals (NLS), 
and binding partners, in addition to sequence-based information such as 
cDNA, multiple alignments, and phylogenetic trees. SCOP provides 
detailed information about evolutional relationships between 
PDB-database proteins dealing with family, superfamily, folding, and 
protein types. 

The interactions between proteins are provided in many different 
databases, such as the Search Tool for the Retrieval of Interacting Genes/ 
Proteins (STRING) (Szklarczyk et al., 2016) database. STRING uses a 
spring model to generate the network images. Nodes are modeled as 
masses and edges as springs. The nodes’ final position in the image is 
computed by minimizing the system sub-cellular locations ’energy’. It 
contains 24.5 million proteins from more than 5000 organisms. 

Clusters of Orthologous Groups (COG) protein database (Tatusov 
et al., 2000) is an attempt to reach a phylogenetic classification of the 
proteins encoded in 21 complete genomes of bacteria, archaea, and 
eukaryotes. Phylogenetic classification represents how species are 
related to each other through a common ancestor. 

Some other databases deal with one or a group of specific proteins 
such as LIPASE (Fischer and Pleiss, 2003), G Protein-Coupled Receptors 
(GPCRDB) (GPCRdb, 2020), and Transporter Classification Databases 
(TCDB) (Saier et al., 2006). LIPASE deals with the enzyme LIPASE, 
responsible for the breakdown of fats in food during the digestion pro-
cess. GPCRDB deals with the family of G proteins acting as molecular 
switches inside cells. TCDB classifies more than 1500 families of mem-
brane transport proteins in a different organism. 

The rest of this paper is organized as follows: Section II presents the 
background and related work. In section III materials and methods are 
introduced and illustrated with full details. In section IV, explains the 
proposed model. While in Section V is the theoretical part explanation of 
the used evaluation metrics. the results were discussed and evaluated 
with multiple evaluation metrics. Section VI. In Section I discuss and 
mention the advantageous of the proposed model. And finally, Section II 
concludes the paper as well as pointing out suggested future work. 

2. Related work 

Another way to classify the protein function prediction methods is 
according to the types of computational approaches used:  

• Conventional  
• Machine Learning  
• Deep Learning 

BLAST (Altschul et al., 1990), the primary technique from the con-
ventional approaches, is a tool proposed for local alignment search to 
compare and find the similarities between two sequences for protein 

function prediction. Many updates and improvements have been pro-
posed on BLAST, such as PSI-BLAST (Altschul et al., 1997), for perfor-
mance enhancement. 

ProMK (Yu et al., 2015) as a machine learning approach uses a 
combination of five different kernels from the K-Nearest Neighbors 
(KNN) algorithm (Euclidean, Standardized Euclidean, Cosine, Correla-
tion, and Spearman) targeting different orgasms such as yeast, human, 
and mouse) for predicting the function of the protein. 

A variety of deep learning approaches have been proposed for pro-
tein function prediction. Some of these techniques used UniProtKB and 
CAFA datasets. These techniques are briefly summarized in the 
following paragraphs for the sake of comparison with the proposed 
technique. 

In Go-FDR (Gong et al., 2016) was proposed for protein function 
prediction from sequences. GO-FDR uses the PSI-BLAST sequence 
alignment algorithm to generate position-specific scoring matrix PSSM 
(Alejandro et al., 1999) to score the relevant GO term depends on the 
relative entropy. The evaluation is done against the CAFA2 competition 
and ranked from the top methods in this compition. 

In FFPred 3.0 (Cozzetto et al., 2016), the SVM algorithm is selected 
to generate predictions by scanning the input sequences. SVM library 
was trained using the GO annotations and UniProtKB. The training set 
was extended to cover the three domains MF, BP, CC. SVM with Mat-
thews correlation coefficient (MCC) is used, candidate functional classes 
were identified based on the availability of sufficiently large and 
confident positive and negative instances. 

In Go-labeler (You et al., 2018a), logistic regression combined with 
BLAST-KNN was used for protein function prediction. The model is 
trained on the UniProtKB dataset. To extract the information and the 
features from the sequences, K-mers (Kawulok and Deorowicz, Apr 17, 
2015), InterPro (Mitchell et al., 2015), and ProFET (Ofer and Linial, 
2015) algorithms were used and conducted. The evaluation is done 
using Fmax, S-min, AUPR metrics on CAFA1 and CAFA2. 

In Deep_GO (Kulmanov and Khan, 2018), a convolutional neural 
network (CNN) is used and trained for protein function prediction using 
two different sources, the amino acid sequences from 
UniProtKB-Swissport and the protein-protein interaction network from 
the STRING databases. The model was evaluated using Fmax, AUPR, and 
MCC. The CNN model was constructed with around 20 layers included 
pooling, embedding, and activation functions. 

MTDNN (Fa et al., 2018) proposed a model for predicting human 
proteins using a malti-task feedforward neural network. The model is 
constructed from 6 feedforward layers with activation functions: RELU, 
sigmoid, and softmax in the output layer. The proposed method uses 
both the shared representations of all tasks and specific characteristics of 
individual tasks. MTDNN trained the model using the GO dataset to 
predict and annotate the amino acid sequence against only five different 
classes. The evaluation is done using the F1 score and the CAFA 
challenge. 

Deep_Go_Plus (Kulmanov and Hoehndorf, 2020) predicts the func-
tions of the protein from sequences. A CNN and similarity-based method 
BLAST are combined using the weighted sum approach. The proposed 
model was constructed from 49 layers activated with sigmoid and RELU 
activation functions. The model used UniProtKB-Swissport as the 
training dataset. While the test set used CAFA challenge datasets and 
subset samples from the UniProtKB-Swissport. The proposed model was 
evaluated using Fmax, Smin, and AUPR. 

From the previous deep learning discussed methods, Deep-GO-Plus 
(Kulmanov and Hoehndorf, 2020) and DeepLoc (José Juan Almagro 
Armenteros et al., 2017) used a combination of multiple techniques. 
Deep_Go_Plus (Kulmanov and Hoehndorf, 2020) combined BLAST with 
a CNN using a weighted sum method, while DeepLoc (José Juan 
Almagro Armenteros et al., 2017) combined LSTM and CNN. In addition, 
for the machine learning approach, ProMK (Yu et al., 2015) combined 
multiple kernels of KNN. 

The approaches (Taju et al., 2018; Nauman et al., 2019; José Juan 
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Almagro Armenteros et al., 2017; Wei et al., 2018; Clark and Radivojac, 
2011; Minneci et al., 2013; Yu et al., 2015; Yunes and Babbitt, 2019) 
were also proposed in the literature. However, they will not be discussed 
because of these approaches are:  

• used different datasets (Taju et al., 2018; Nauman et al., 2019; 
Minneci et al., 2013)  

• applied their techniques to different targets (such as subcellular 
localization prediction (José Juan Almagro Armenteros et al., 2017; 
Wei et al., 2018) and proteins family function prediction (Taju et al., 
2018)).  

• The model was designed and Performed on a subset of the domains 
(Clark and Radivojac, 2011; Minneci et al., 2013; Yunes and Babbitt, 
2019) (MF, BP, and CC). 

All these reasons rendered their comparison with the proposed 
technique in this paper rather difficult. 

Among these other approaches, DeepLoc (José Juan Almagro 
Armenteros et al., 2017) used a combination of two deep learning ar-
chitectures (LSTM and CNN) for subcellular localization prediction 
using amino-acid sequences. The training was performed on the Uni-
ProtKB database against ten subcellular locations. The CNN model was 
designed with two layers, while the RNN model was designed with two 
LSTM layers. The maximum length of the input sequence in this 
approach was limited to 1000. 

This paper proposes the combination of two cascaded deep learning 
algorithms (CNN and LSTM) to improve the results and reduce the 
computational burden in protein function prediction. 

3. materials and methods 

3.1. Training and test datasets 

This paper is focused on the primary Amino-Acid sequence. To train, 
validate and test the model UniProtKB-SwissProt database was used. In 
addition, CAFA datasets were selected for testing the proposed model for 
different organisms. 

3.1.1. UniProtKB dataset 
UniProtKB (The UniProt Consortium, 2019) database was proposed 

for amino acid sequences. It is an extensive database published to pro-
vide rich annotations and information on proteins and their functions. 
Some of the UniProtKB database’s core data are amino-acid sequences, 
protein names, protein descriptions, cross-references, taxonomy data, 
and citation information. UniProtKB consists of two main sub-datasets, 
UniProtKB-SwissProt and UniProtKB-TrEMBL. 

UniProtKB-SwissProt is a high-quality, fully experimentally proven 
annotations. This information was manually extracted from both 
computational methods and biological literature and then verified with 
different experimental techniques performed in biological labs. 

The second section is UniProtKB-TrEMBL, which is the information 
that was extracted from computational methods only and still waiting to 
be manually reviewed in biological literature. 

as shown in Fig. 1 and Fig. 2 the number of entries in both UniProtKB 
Swissport and TrEMBL. For the UniProtKB/TrEMBL is remarkably 
increasing over 200 M entries, while on the other hand UniProtKB/ 
Swissport over 500 K entries. 

In order to take a look inside the distribution of the sequences lengths 
of the overall entries in the database, the following Fig. 3 shows a sta-
tistical result from lengths range from 1 to > 2600 in UniProtKB/ 
TrEMBL. While on the other hand UniProtKB/ Swissport length distri-
bution shown in Fig. 4. 

The sequences of proteins employed in this research were conducted 
and downloaded from the UniProtKB database (The UniProt Con-
sortium, 2019). UniProtKB-SwissProt’s was used in the proposed 
method to construct the training and the test set. These include:  

• Protein names  
o Protein name is a string code constructed from chars and numbers 

such as “1433B_HUMAN” for protein name (14-3-3) protein beta/ 
alpha. its Homo sapiens protein with CC Function type.  

• Accessions entity  
o It’s a list of numbers associated with the entity, this numbers 

provide a stable way of identifying entries from the release dates, 
this helps in the mapping procedure between the Gene Ontology 
dataset which is the target and the amino acid sequences.  

• Amino-acid sequences  
o Represent the sequence of the alphabets chars each alpha bit 

represent a specific amino acid.  
• Annotations (GO ID’s)  

o Gene-Ontology represent the target functions of that specific 
protein.  

• Organism’s name  
o Represent the kingdom of the species such as bacteria species or 

homo- sapiens species. 

The training and test sets were filtered using two criteria. First, the 
datasets were filtered with the annotations that have biological experi-
mental evidence codes (IGI, IEP, TAS, IC, EXP, IDA, IPI, IMP) targeting 
human proteins. Second, a filter was performed by removing the pro-
teins that have no GO annotations. The number of samples in the 
training, validation, and test sets were 51344, 5705, and 71, respectively 
as shown in Fig. 5. 

3.1.2. CAFA dataset 
CAFA is a yearly global challenge proposed in the field of bioinfor-

matics aimed to predict the function of proteins from their sequences or 
structures. CAFA challenge series was introduced in 2010/11 in order to 
find functions of proteins that rapidly increased in online databases and 
biological literature. Table 1 presents a comparison between the various 
CAFA datasets available online. 

To evaluate the proposed method, three different test sets were 

Fig. 1. Number of Entries in UniProtKB/TrEMBL.  

Fig. 2. Number of Entries in UniProtKB/SwissProt’s.  
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selected from the CAFA series. From CAFA4, a number of samples were 
selected as test cases from eight different organisms, including human to 
test if the proposed model can adapt with other species sequences. From 
CAFA3, a specific number of samples were selected from the human 
organism. The number of test sets selected from each CAFA dataset is 
presented in Table 2. While in CAFA2, 281 samples from bacteria or-
ganism were selected. 

Fig. 3. Length Distribution of sequences in UniProtKB/TrEMBL.  

Fig. 4. Length Distribution of sequences in UniProtKB/SwissProt’s.  

Fig. 5. The training validation and test sets statistics.  

Table 1 
CAFA Data Sets Comparison.  

Dataset Introduced Number of Organisms Tasks 

CAFA4 2019/20  18 1-Phenotype prediction. 
2-Protein function prediction. 

CAFA3 2017/18  23 1-Phenotype prediction. 
2-Protein function prediction 

CAFA2 2013/14  28 Protein function prediction 
CAFA1 2010/11  18 Protein function prediction  
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3.2. Predicted (target) functions 

Gene-Ontology (GO) (Ashburner et al., 2000) is a hierarchical 
description of protein functions that describe three categories. The 
Growth of the Gene-Ontology annotations in the scientific publications 
research over time is remarkably increasing as shown in Fig. 6 the 
number of annotations over the past three years. The GO annotations 
expected to reach over 200 K annotations in 2022 which a huge 
contribution in this resource. 

Gene-Ontology represents the target of the predicted functions of this 
research. These protein functions can be categorized as follows: 

• Molecular Function (MF) are those functions belonging to the ac-
tivities that occur at the molecular level (simple processes). MF de-
scribes the action of the activities. However, they do not describe 
where or when the activity takes place. An example of MF is the 
catalytic activity or binding activity. 

• Biological Process (BP) represents the largest and complex pro-
cesses. Those processes represent MF activities or chemical reactions 
that are involved inside and/or outside cells. An example of BP is 
DNA repair and signal transduction.  

• Cellular Component (CC) are those structures of which cells are 
composed. CC represents complex places that exist inside and/or 
outside cells where activities are performed. An example of CC is 
ribosome and mitochondrion.  

• In this paper, GO annotations were used for the October 2020 
release. These annotations amount to a total number of classes for 
12157 for MF, 30851 for BP, and 4396 for CC as shown in Fig. 7. The 
number of protein functions required to be identified in this paper 
amounts to 4600 protein functions. 

3.3. Preprocessing technique 

Protein sequences are made up of sequences of 20 Amino-Acid 
characters as: Alanine (A), Arginine (R), Asparagine (N), Aspartic acid 
(D), Cysteine (C), Glutamine (Q), Glutamic acid (E), Glycine (G), Histi-
dine (H), Isoleucine (I), Leucine (L), Lysine (K), Methionine (M), 
Phenylalanine (F), Proline (P), Serine (S), Threonine (T), Tryptophan 
(W), Tyrosine (Y), Valine (V). These sequences are similar to the 
example sequences shown in Fig. 8. 

One hot-encoding creates a new dimension for each sequence 
(Rodríguez et al., 2018). All of these dimensions are orthogonal to each 
other in the vector space. The length of that vector is equal to the total 
number of sequences. As shown in Fig. 8, each dimension is represented 
as an integer binary vector of zeros except at the corresponding sequence 
index, where a value of 1 is assigned. The methodology behind using 
one-hot encoding is to prevent the model from overfitting behavior 
during the training process (Shorten and Khoshgoftaar, 2019). 

One hot-encoding is used in the proposed model to represent the 
input layer in order to encode the input sequences. In this paper, the 
proposed model can accept lengths of input protein sequences up to 
2000 amino acids each. This is performed to cover the majority of input 
amino acid sequences proposed in the scientific literature for real-life 
scenarios. 

Table 2 
CAFA datasets used.  

Dataset Organism Name Number of Test Sets 

CAFA4 Homo-Sapian (Human)  122 
Arabidopsis thaliana  535 
Danio rerio  18 
Mus musculus Linnaeus  136 
Rattus norvegicus  42 
Dictyostelium Discoideum  39 
Escherichia coli K-12  53 
Schizosaccharomyces Pombe 972 h-  56 

CAFA3 Homo-Sapian (Human)  1131 
CAFA2 Bacteria  281  

Fig. 6. Growth of Gene-Ontology Annotations over time.  

Fig. 7. Gene-Ontology annotations used in the dataset.  
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3.4. Neural networks building blocks 

3.4.1. Pooling 
Pooling is a technique represented as a layer (Abdel-Hamid et al., 

2013), for down sampling the convolutional layers’ dimensions without 
losing the input features’ details (O’Shea and Nash, 2015). Moreover, 
pooling is a spatial invariant technique that can detect the object’s 
features in different positions. Two main types of pooling, max, and 
average. Max pooling is better for extracting the extreme features, while 
average pooling sometimes takes all features into accounts, resulting in 
non-crucial features (Giusti et al., 2013). In the proposed model 
Max-Pooling type (Krizhevsky et al., 2017) is used and implemented. 

3.4.2. Activation functions 
Activation functions add some non-linearity to the output neurons to 

allow the model to learn complex tasks (Sharma, 2017). According to 
the type of the function used, it activates/deactivates some neurons from 
the previous layer depending on the specific shape of the activation 
function (Lau and Lim, 2017). 

In the proposed system, two different activation functions were used. 
The LSTM model uses a "tanh" activation function, as represented by Eq. 
1, which illustrates the hyperbolic tangent function. The plotted graph 
of the function is depicted in Fig. 9-A. 

f(x) = tanh(x) =
2

1 + e− 2x − 1 (1) 

Alternatively, the sigmoid function was chosen as an output layer of 
the overall system, as represented by Eq. 2. Fig. 9-B depicts the plotted 
graph of the sigmoid function employed. 

f(x) =
1

1 + e− x (2)  

3.4.3. Flatten layer 
A flatten layer is used to convert the convolutional layer’s output into 

a single long feature vector (1-D array). This process is performed to feed 
this vector to the output layer. According to studies (Chollet, 2017; 
Jonghoon et al., 2014), flatten layers can effectively speed up the 
learning process by double. 

3.4.4. Convolutional Neural Network (CNN) 
Convolutional Neural Network (CNN) is a supervised learning tech-

nique (Sainath et al., 2013). CNN can merge the feature extraction and 
feature classification processes into a single body. Compared to the 
conventional fully connected Multi-Layer Perceptron (MLP), CNN can 
deal with large inputs with high computational efficiency (Gu et al., 
2018). 

Since the input data is a One-dimensional (1D) sequence, it is 
convenient to use a 1D CNN configuration in the proposed model that 
fits the input data sequences with different size kernels (Kiranyaz et al., 
2019). 1D CNN simply requires array operations, this means computa-
tional complexity is significantly lower than 2D CNNs. Therefore 1D 
CNN can be trained on any standard hardware setup and does not 
require a GPU. 

3.4.5. Long-Short Term Memory (LSTM) 
Long short-term Memory (LSTM) (Hochreiter and Schmidhuber, 

1997) is a recurrent neural network architecture used in sequence 
modeling and NLP applications. LSTM is an enhanced version of the 
original Recurrent Neural Network (RNN) architecture. LSTM solves the 
inability to access the long term memory problem of RNN. Moreover, 
LSTM solves the vanishing gradient problem that the original RNN ar-
chitecture suffers from (Hochreiter and Schmidhuber, 1997). 

LSTM consists of three main parts: an input gate, an output gate, and 
a forget gate. It can be trained to learn what information to store in the 
Memory, how long to store it, and when to read it out (Sherstinsky, 
2020). In the proposed model, multiple LSTM are used with different 
sizes, which will be described in greater details in the next section. 

4. proposed Deep_CNN_LSTM_GO model 

The proposed model is constructed from a combination of CNN and 
LSTM Neural Network as shown in Fig. 10. This hybrid model overcomes 
the sequence modeling problems and limitations, by taking the advan-
tages of both architectures. 

For Deep_CNN_LSTM_GO, the protein sequence is encoded into a 
matrix using one-hot encoding, which can be seen at the left of Fig. 10. 

For each CNN block the model extracts the local features of input and 
at a same time maps these inputs with some non-linearity to the output. 
This process is repeated for each region, those regions are defined using 
the number of filters and kernel sizes. As a result of that, CNN is a Neural 
Network architecture that can learn the features hierarchically. In other 
words, as much as the number of convolution layers are increased, high- 
level, complex features are learned. 

On the other hand, LSTM is an ingenious technique that can make the 
Neural Network decide what important information to remember for 
further use and what to filter out and forget in the sequence. Using this 
advantage, the neuron can learn from features and predict subsequent 
values. This combination enables the model to learn regional and tem-
poral features at a time. In other words, the convolutional layers 
detecting "biological words" (regional pattern) and the LSTM tying them 
into a "biological sentence" with the advantage of the "remember" or 
"forget" characteristics, which is then fed to a flatten layer that generates 

Fig. 8. Representation of One Hot-Encoding process for three input amino acid sequences.  

Fig. 9. Plotted graphs of the activation functions employed in Deep-CNN- 
LSTM-GO, (A) “tanh” activation function (B) “Sigmoid” activation function. 
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the final output represented in GO. As shown Fig. 11 illustrates an 
example of what the proposed method can do, showing the input and 
output process. 

Despite imposed restrictions applied to the proposed model in order 
to create a scalable model, such as the reduced number of layers, the 
training is performed using standard device CPU, and other parameters 
will be discussed in details in Section VI. 

Deep_CNN_LSTM_GO can perform competitive result in some cases 
and outperform in others using different data sets, organisms, and 
evaluation metrics, as will be discussed in section V and VI. 

As depicted in Fig. 10, The proposed Deep_CNN_LSTM_GO consists of 
six stages, described as follows:  

• First stage One Hot-Encoding is the input stage that takes an input 
of the amino-acid sequences, stacking each amino acid sequence in 
separate space which located lndex= 1 and the others is zeros. It 
employs one-hot encoding with a maximum amino-acid sequence 
input length of 2000 different symbols.  

• Second stage 1D-CNN is the convolutional neural network stage. It 
consists of eight parallel 1D-CNN architectures. These are con-
structed and built with the following number of filters: 

⎡
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1992 − 7
1984 − 7
1976 − 7
1968 − 7
1960 − 7
1952 − 7
1944 − 7

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1993
1985
1977
1969
1961
1953
1945
1937

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The maximum kernel size (filter length) of 128 per filter is used.  

• Third Stage Max-Pooling is composed of eight Max-Pooling units 
attached to the outputs of the eight 1D-CNN blocks of the second 
stage. These units are constructed with a window size of 128.  

• Fourth stage LSTM is allocated after each max-pooling unit. An 
LSTM stage is concatenated with a dimension of output space of size 
eight. It is activated with a "tanh" activation function. 

Fig. 10. : Proposed Deep_CNN-LSTM-GO model. For one hot encoding the 1st parameter is ( input):- represent the input amino acid sequence, while the 2nd 
parameter (2000) is the max length of the input, For CNN the 1st parameter is the input represent the output from the previous layer, 2nd parameter is explains the 
number of filters (kernel) while the 3rd parameters is the filter (kernel) length or size.For Pooling the 1st parameter is the input represent the output from the 
previous layer, 2nd parameter is explains length or size of pooling layer. For LSTM the 1st parameter is the input represent the output from the previous layer, 2nd 
parameter is explains the number of output units. 
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• Fifth Stage Flatten All outputs from the LSTM stage are directed as 
inputs to each one of the eight Flatten blocks forming this stage.  

• Sixth stage output takes its inputs from the outputs of the eight 
blocks of the Flatten stage. It contains neurons activated with the 
Sigmoid activation function to add non-linearities to the output. The 
number of the output neurons is equal to the number of required 
functions of 4600. 

The model is optimized throughout the iterative process. During the 
training phase, Deep_CNN_LSTM_GO is needed to fine-tune the hyper-
parameters to get the best results carefully. The training validation and 
test sets were split to be 90%, 9% and 1% respectively we used this 
distribution to be same as done in DeepGOPlus for further comparisons 
to fair. 

Model error is computed using the binary cross-entropy cost/loss 
function (Goodfellow et al., 2016). Binary cross entropy performed well 
against the independent data and fits with the multi-class classification 
tasks such as protein function prediction tasks, where sequences repre-
sent the input data and the output data has one or more GO (class). 

The weights of the proposed Neural Networks model are updated 
using the Adam-optimization algorithm (Sak et al.,). Adam-optimization 
algorithm is chosen because it combines the best properties of two 
state-of-the-art optimization algorithms (Kingma and Ba, 2014) and 
(Duchi, Jul 1 et al., 2011). It is recorded in the works of literature and 
many surveys (Duchi, Jul 1 et al., 2011) that most authors used 
Adam-optimization because it performs well against the non-convex 
optimization problems (Sak et al.). It also performs well with the 
sparse noisy gradients and it consumes less Memory compared to other 
optimization algorithms (Duchi et al., 2011). 

Batch Gradient Descent (BGD) method (Ruder, 2016) is used to train 
the data. BGD takes the average of batch gradients of all training ex-
amples in just one step. Averaging gradients of all samples in training 
data helps the cost function smoothly diverge to the global minimum 
(Duchi et al., 2011; Ruder, 2016; Bottou et al., 2018). In addition, the 
early stop technique is used during the training process to prevent 
overfitting. 

As discussed previously, 90% of the dataset were selected to train the 
neural networks model for the training phase. The weights are first 
initialized randomly to prevents the output neurons from vanishing or 
exploding. At the beginning of the training step, the performance of the 
neural networks is worst. Then it starts to be improve and it is optimized 
using ADAM optimization. The performance is evaluated by the system 
using the loss function, where this value is minimized using the cross- 
entropy in order to find the best accuracy. The training phase is 

started with 1024 Epoch, each Epoch has 1605 steps. After each 
completed epoch the validation loss is calculated. Then the optimization 
process is iteratively updated using BGD until the loss function is 
minimized. 

The training phase is be terminated if one of two scenarios occurs. 
The first scenario is that the training and validation loss functions are 
not optimized after 6 epoch. Then using early stop will terminate the 
training phase with the latest optimized loss functions. The second 
scenario takes place when the number of Epochs is finished. 

After the process is finished a final loss function is calculated using a 
10% test set. This is the test loss value. The model concludes with a test 
loss value of 0.027383. The final training and validation loss functions 
are 0.0359, and 0.0460 respectively. 

Deep_CNN_LSTM_GO model is trained and designed using the new 
version of TensorFlow that includes Keras framework (Abadi et al., 
2016; https://www.tensorflow.org/) using python programming lan-
guages. The proposed model is trained on an Intel-Core i7–6700 ma-
chine, with 8 GB of RAM. 

5. Evaluation metrics 

For evaluating the proposed Deep_CNN_LSTM_GO, five different 
evaluation metrics were proposed and implemented. These are namely 
Precision, recall, Fmax, Smin, and AUPR. Each of these evaluation 
metrics is computed for each of the three protein functions (MF, BP, and 
CC). 

To calculate and evaluate the model using those metrics, a Confusion 
Matrix (Stehman, 1997) is constructed first. Table 3 shows the Confusion 
Matrix parameters. 

5.1. Precision 

Precision is a tool that measures how precise or accurate the pro-
posed model is out of the predicted positive which counts how many 
from the predictions are true. As shown in Eq. 3, the model’s Precision is 
calculated from the numbers of True Positive (TP) and the number of 

Fig. 11. Illustrated example of what the proposed method can do, showing the input and output process.  

Table 3 
Confusion Matrix.   

Predicted 

Negative Positive 

Actual Negative True Negative False Positive 
Positive False Negative True Positive  
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False Positive (FP). 

Precision =
TP

TPP
(3) 

where, the Total Predicted Positive (TPP) is given by: 

TPP = TP+FP  

5.2. Recall 

Recall measures the sensitivity of the model. Sensitivity refers to the 
actual predicted positive, as shown in Eq. 4 for the True Positive (TP) 
False Negative (FN). 

Recall =
TP

TAP
(4) 

where, the Total Actual Positive (TAP) is given by: 

TAP = TP+FN  

5.3. Fmax 

F-1 score is a balance between Precision and recall. It is the harmonic 
mean of Precision and recall. Fmax score is calculated using Eq. 5. 

Fmax = Max
{

2xPrecisionxRecall
Precision + Recall

}

(5)  

5.4. Smin 

Smin is another evaluation metric (Clark and Radivojac, 2013). It 
measures the semantic distance between real and predicted annotation 
based on the classes’ Information Content (IC). This method is used in 
Deep_Go_Plus (Kulmanov and Hoehndorf, 2020), Go-Labeler (You et al., 
2018a), and DeepText2Go (You et al., 2018b). 

Each of the three protein functions (MF, BP, and CC) constitutes a 
class (C). For each of these classes, a subgraph (T) with its nodes (ν) is 
drawn. 

The Information Content (IC) for a class (C) at node (ν) of subgraph 
(T) can be thought of as the number of bits of information one would 
receive about a protein if it were annotated with that particular sub-
graph (Clark and Radivojac, 2013). 

IC at a particular node of a subgraph can be calculated in a 
straightforward manner using the inverse logarithm of the product of all 
prediction probabilities (Pre) for class (C) given by parents of this class 
(C) as shown in Eq. 6. 

ICC = − log

[
∏

ν∈T
Pre(C)parents)

]

(6) 

The Remaining Uncertainty (RU) is calculated at a certain gene 
ontology node (i, where, i = 1..n). RU is simply the total Information 
Content at node i, which is contained in True (Ti) but not in Predicted 
(Pi) annotation graphs. 

The Average Remaining Uncertainty (ARU) is calculated by dividing 
the sum of all remaining uncertainties by the total number of gene 
ontology nodes (n) for a class (C) as shown in Eq. 7. 

ARUC =
1
n
∑n

i=1

∑

Ti − Pi

ICC (7) 

On the other hand, the Mis-Information (MI) introduced by the 
classifier corresponds to the total information content at a certain gene 
ontology node (i,where, i = 1..n) along incorrect paths in Prediction (Pi), 
but not in True (Ti) annotation graphs. 

The Average Mis-Information (AMI) is calculated similarly to ARU 
and may be expressed by the following equation for a certain class (C) as 
shown in Eq. 8. 

AMIC =
1
n
∑n

i=1

∑

Pi − Ti

ICC (8) 

Finally, Smin is calculated for class (C) as in Eq. 9. 

SminC = Min
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(AMIC)
2
+ (ARUC)

2
√ )

(9)  

5.5. AUPR (area under Precision-Recall curve) 

Precision-Recall curve shows the balance between the Precision and 
recall for different thresholds. A higher AUPR refers to that both Pre-
cision and recall are high. A high precision relates to a low false-positive 
rate. Alternatively, high recall relates to a low false-negative rate. In 
other words, high Precision and high recall mean that the proposed 
system returns many results, and the majority of them are correct. 

6. Results and biological evaluation 

In the evaluation results, five different comparisons are performed to 
evaluate the proposed Deep_CNN_LSTM_GO algorithm against different 
models proposed in the field. Three different datasets: UniProtKB- 
SwissProt’s, CAFA3 and CAFA4 were used here. In the next five sub- 
sections Deep_CNN_LSTM_GO is evaluated using different These are 
presented in the following five sub-sections. 

6.1. UniProtKB-Swissport comparison (MF, BP, CC) 

The proposed Deep_CNN_LSTM_GO is tested for the selected test-set 
generated from UniProtKB-Swissprot. The selected samples in the test 
set are 100 different samples, from which none are included in the 
training set. The evaluation is performed against three different methods 
proposed in the field, GO-Labeler (You et al., 2018a), Deep_GO (Kul-
manov and Khan, 2018) and Deep_Go_Plus (Kulmanov and Hoehndorf, 
2020). As shown in Fig. 12, the proposed method is compared and tested 
against each one of the three sub-ontologies (MF, BP, CC) using Fmax, 
Smin, and AUPR performance metrics. The comparison results of most 
evaluations are summarised in Table 4 for clarity and convenience. 

For Fmax, Deep_CNN_LSTM_GO performs 4th in MF and BP sub- 
ontology cases with 0.407, and 0.356 scores. Deep_CNN_LSTM_GO 
ranked 3rd to be outperformed by Deep_GO (Kulmanov and Khan, 2018) 
in the CC sub-ontology with a score of 0.675, and almost in tie with 
Deep_GO_Plus (Kulmanov and Hoehndorf, 2020) that placed the 1st with 
a negligible score difference of 0.024. 

For Smin, the proposed model came 4th in MF and CC sub-ontologies 
with scores of 10.99 and 12.06, respectively. It ranked 2nd place to be 
outperformed by Deep_Go (Kulmanov and Khan, 2018), and Deep_-
Go_Plus (Kulmanov and Hoehndorf, 2020) in the BP sub-ontology with a 
score of 24.41. 

For the AUPR evaluation metric, Deep_CNN_LSTM_GO outperformed 
Deep_GO (Kulmanov and Khan, 2018) and Go-labeler (You et al., 2018a) 
in CC with a score of 0.721 and almost in a tie with Deep_Go_Plus 
(Kulmanov and Hoehndorf, 2020) with a score difference of just 0.005. 
It, however, ranked 3rd for the BP sub-ontology to be outperformed by 
Go-labeler (You et al., 2018a) with a score of 0.306 and very close to 
Deep_GO (Kulmanov and Khan, 2018) with a difference of 0.026. It 
ranked 4th for the MF sub-ontology with a score of 0.280. 

6.2. CAFA3 comparison against FFPred and Go-FDR (human organism) 
(MF, BP, CC) 

CAFA3 is used to evaluate the proposed method against FFPred 
(Cozzetto et al., 2016) and Go-FDR (Gong et al., 2016). As mentioned 
earlier, these techniques are in the top and most cited methods in the 
field The comparison is performed using the performance metrics: Fmax, 
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Precision and Recall for each subontology (MF, BP, CC) on the human 
organism. Smin and AUPR not be choosen here bacuase FFpred (Coz-
zetto et al., 2016) and Go-FDR (Gong et al., 2016) didn’t use them in the 
evaluation. The results are shown in Fig. 13 and the comparisons are 
presented in Table 4. 

For Fmax, Deep_CNN_LSTM_GO outperformed FFpred (Cozzetto 
et al., 2016) and Go-FDR (Gong et al., 2016) in BP and CC sub-ontologies 
with scores of 0.322, and 0.45, respectively. In the MF sub-ontology 
case, it ranked 3rd with a score of 0.115. 

In Precision and Recall, Deep_CNN_LSTM_GO outperformed FFpred 
(Cozzetto et al., 2016) and Go-FDR (Gong et al., 2016) for the BP and CC 
sub-ontologies with scores of 0.401, 0.46 and 0.693, 0.455 respectively. 

It came in 3rd place in the case of MF sub-ontology, with scores of 0.070, 
0.325. 

6.3. Performance of the proposed method for the four datasets 
(UniProtKB Swissport, CAFA4, CAFA3, CAFA2) combined (MF, BP, CC) 

The proposed method is compared against itself for the four test 
datasets (UniProtKB Swissport CAFA2, CAFA3, and CAFA4). The per-
formance metrics comparison included: Fmax, Smin, and AUPR for each 
one of the three sub ontologies (MF, BP, CC). The results are shown in  
Fig. 14, and the comparisons are presented in Table 4. 

It is clear that the results for the Uniprot-Swissprot dataset 

Fig. 12. UniProtKB Swissport performance comparison of the proposed method (Deep_CNN_LSTM_GO) with GO_Labeler, Deep_GO, and Deep_GO_Plus for the three 
cases of MF, BP and CC. 

Table 4 
Evaluation of the proposed Deep_CNN_LSTM_GO technique against different techniques proposed in the field for different datasets.  

Dataset Algorithm Performance evaluation metric 
Fmax Smin AUPR 
MF BP CC MF BP CC MF BP CC 

UniprotKB-SwissProt GO-Labeler 0.580 0.370 0.687 5.077 15.177 5.518 0.546 0.225 0.700 
Deep GO 0.449 0.398 0.667 10.722 35.085 7.861 0.409 0.328 0.696 
Deep Go Plus 0.585 0.474 0.699 8.824 33.576 7.693 0.536 0.407 0.726 
Deep_CNN_LSTM_GO 0.407 0.356 0.675 10.998 24.41 12.065 0.28 0.306 0.721  
Organism name Fmax Smin AUPR 

MF BP CC MF BP CC MF BP CC 
CAFA4 Human 0.113 0.215 0.443 9.015 38.025 9.175 0.0501 0.107 0.294 

Arabidopsis thaliana 0.32 0.191 0.507 6.714 32.612 11.562 0.039 0.091 0.412 
Danio rerio 0.1 0.189 0.444 16.03 31.101 5.909 0.0509 0.109 0.32 
Mus musculus Linnaeus 0.1 0.245 0.492 9.031 48.187 14.327 0.042 0.14 0.378 
Rattus norvegicus 0.108 0.26 0.368 16.565 49.348 15.844 0.0401 0.129 0.234 
Dictyostelium discoideum 0.081 0.23 0.584 5.871 44.309 12.866 0.042 0.136 0.468 
Escherichia coli K-12 0.082 0.118 0.094 11.832 26.557 6.111 0.03 0.049 0.032 
Schizosaccharomyces pombe 972 h 0.173 0.236 0.618 9.364 26.325 12.964 0.064 0.128 0.565 
Average 0.1346 0.2105 0.44375 10.552 37.058 11.094 0.0447 0.1111 0.3378 

CAFA3 Algorithm Fmax Precision Recall 
MF BP CC MF BP CC MF BP CC 

FFPred3 0.38 0.26 0.44 0.35 0.301 0.41 0.4 0.23 0.43 
GoFDR 0.52 0.2 0.40 0.89 0.27 0.40 0.36 0.15 0.41 
Deep_CNN_LSTM_GO 0.115 0.322 0.455 0.0701 0.401 0.46 0.3247 0.269 0.455  

Fig. 13. CAFA3 performance comparison of the proposed method (Deep_CNN_LSTM_GO) with FFPred3 and GoFDR (human organism) for the three cases of MF, BP 
and CC. 
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outperformed the results for the CAFA series for Fmax and AUPR with 
scores of (0.407, 0.356, 0.675) and (0.28, 0.306, 0.721), respectively. 

Moreover, it is clear from the graphs of Fig. 14 for the CAFA series, 
that the proposed model performs very close to the results of the three 
datasets on different organisms (human for CAFA4 and CAFA 3) and 
(bacteria for CAFA2). The performance metric involved is Fmax in CC 
sub-ontology with (0.443, 0.450, 0.484) values. This, in effect, shows 
the robustness of the proposed model accuracy in prediction. Note that 
the datasets have been proposed at different times as mentioned earlier. 

6.4. CAFA4 comparison against eight different organisms (MF, BP, CC) 

CAFA4 is used to evaluate the proposed method’s performance for 
eight different organisms using Fmax, Smin, and AUPR for all the sub-
ontology cases (MF, BP, CC). As shown in Table 4 the proposed model 
performed good results in different organisms, 

For Fmax the proposed model performs 0.618 in CC which close to 
the results in UniprotKB-SwissProt in the CC 0.675, which leads that the 
proposed model can perform the same results to the other organisms or 
close to it. Another note to be taken from the results in CAFA4 that the 
scores for the 8 organisms are very close to each other which means that 
the proposed model can perform closely the same results for different 
organisms that have different amino acid sequence characteristics and 
features that the human. 

6.5. Hyperparameters comparisons of the proposed method with other 
models ( Deep_GO, Deep_Go_Plus) 

To test the hyperparameters and the model design, the proposed 
method is compared against the three different methods proposed in the 

field: Deep_GO (Kulmanov and Khan, 2018), Deep_Go_Plus (Kulmanov 
and Hoehndorf, 2020). The hyperparameters used include the number of 
layers for each model, architectures used, trainable parameter sizes and 
activation functions. These parameters are presented in Table 5. 

Table 5 shows that the proposed model is the only approach that can 
combine two different Neural Network architectures with the lowest 
number of trainable parameters and model complexity. 

The proposed model is the only model in the comparison that can be 
trained on any standard CPU without requiring a dedicated GPU which 
will be explained in the following parameters that show the difference 
and the impact with reasonable numbers. 

As shown in Table 6, a comparison shows the impact of the huge 

Fig. 14. Performance comparison of the proposed method (Deep_CNN_LSTM_GO) using the four datasets (UniProtKB Swissport, CAFA4, CAFA3, and CAFA2) for the 
three cases of MF, BP and CC. 

Table 5 
Hyper-parameters comparisons of the proposed Deep_CNN_LSTM_GO technique against different deep learning methods proposed in the field (Deep_Go_Plus, 
Deep_GO).  

Comparison parameter Deep_CNN_LSTM_GO Deep_Go_Plus Deep_GO 

Number of layers 16 46 20 
No of trainable parameters 

(nearly number) 
1 M 50 M 15 M 

Trained classes size 12157 MF, 
30851 BP, 4396 CC 

10693 MF, 29264 BP,4034 CC 10693 MF, 29228 BP, 4033 CC 

Number of output classes 4600 4774 1024 
Model type used Convolutional Neural 

Network+LSTM 
Convolutional Neural Network Convolutional Neural Network 

Combined with other methods None Similarity based method Hierarchical classification 
Combined methodology None Weighted sum model None 
Optimizer Adam-Optimization Adam optimization RMSProp optimizer 
Activation functions used TanhSigmoid SigmoidReLU Sigmoid 
Over fitting prevention tech’s One hot encodingEarly stop One hot encodingEarly stop DropoutEarly stop 
Pooling layer Yes Yes Yes 
Hardware used Intel Core i7–6700 CPUHD Graphics 

530 GPU 
. 2 X Nvidia Titan X and P6000 GPUs with 
12–24 Gb of RAM. 

CPU 15 GB RAM+ Nvidia GeForce GTX TITAN Z 
GPU 

Frame work used for the training TensorFlow 2.1& Keras TensorFlow 1.14& Keras TensorFlowKeras 
Drop out No No Yes 
Data types used Amino-acid sequences Amino-acid sequences Amino-acid sequences +Protien-Protien Interaction 

Network (PPIN)  

Table 6 
Comparision between the CPU and other versions of GPU’s.  

Comparison 
parameter 

Intel Core i7- 
6700 CPU 
(HD 
Graphics 
530) 

Nvidia GTX 
1060 3 GB 
RAM 

Nvidia 
GeForce 
GTX TITAN 
X GPU 

Nvidia 
GeForce 
GTX TITAN 
Z GPU 

Speed Rank ( 
https://gpu. 
userbenchmark. 
com/) 

361st/654 74th/654 53rd/654 70th/654 

CUDA Cores no data 1280 3072 5760 
Core clock speed 350 MHz 1506 MHz 1000 MHz 705 MHz 
Memory Limits 1 GB 2.5 GB 12 GB 12 GB 
Floating-point 

performance 
403.2 gflops 4275 gflops 6691 gflops 2 × 5046 

gflops 
Memory clock 

speed 
Up to 
2133 MHz 

8000 MHz 7.0 GB/s 7.0 GB/s  
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difference between the employed CPU and the NVIDIA GTX1060–3 GB- 
RAM GPU which is considered one of the simplest GPUs in the market. In 
addition, the comparison includes other upgraded GPU’s versions. 

The comparison in Table 6 shows that the employed CPU in this 
research is nearly 4 times slower than the GTX1060 3 GB in terms of 
speed parameter (https://gpu.userbenchmark.com/). While the Nvidia 
GeForce GTX TITAN Z GPU is 6 times slower, and 7 times slower than 
Nvidia GeForce GTX TITAN X GPU. 

For the CUDA cores it’s clear that the employed CPU has no CUDA 
cores which means no parallel processes will occur during the training, 
while the Nvidia GTX 1060 has 1280, Nvidia GeForce GTX TITAN X GPU 
has 3072, and Nvidia GeForce GTX TITAN Z GPU has 5760. The more 
CUDA cores in the systems, the more parallel processes occur, therefore 
the computation time decrease. 

For the Memory limit, The employed CPU has 1 GB memory, while 
2.5, 12, 12 Memory limits for Nvidia GTX 1060, Nvidia GeForce GTX 
TITAN X, Nvidia GeForce GTX TITAN Z GPU respectively. The more 
Memory, the more tensors can be installed and concatenated, and the 
trainable parameters will be increased. This leads to the ability to insert 
more layers with large sizes and kernels in the Neural Networks. 
Therefore the Neural Networks become very deep. 

Core clock speed represents how fast a single core can perform a 
single task. Its noticed in Table 6 the employed CPU is nearly 4 times 
slower than the GTX 1060, and 3 times slower than GTX TITAN X, and 
two times slower than GTX TITAN Z. 

Floating-point arithmetic is needed for very large or small real 
numbers that are calculated in multiple matrices. The more floating- 
point operations per second, the faster the model to finish the compu-
tations. As shown in Table 6 the used CPU can finish nearly 400 giga- 
flops per second which means ten times slower than GTX 1060 that 
can finish 4275 giga-flops per second. While 15 times slower than GTX 
TITAN X and 14 times than GTX TITAN Z. 

The proposed model is scalable and expandable. In other words, the 
Amino-Acid input sequence length can be increased as well as the size of 
the GO to be predicted. Therefore, the number of layers, kernel, and 
filter sizes can be extended and increased, producing remarkable results 
with the lowest complexity compared to other methods. 

7. Discussion 

In the previous section, we discussed the five different evaluation 
methods done using the different datasets as well as different 
parameters. 

First, the proposed model is robust, it was compared using Uni-
ProtKB-SwissProt’s, and CAFA-series datasets, which are considered as 
the main benchmark datasets for protein function prediction evaluation. 
To achieve a solid comparison, we used multiple datasets which is not 
the case in most of the recent papers in bioinformatics for protein 
function prediction contributions as discussed in the related work sec-
tion. In addition, this research uses three different evaluation metrics for 
each dataset during the comparison, in order to ensure and prove that 
the proposed model outperformed the others using different methods. 

Second, the proposed model is scalable, as it combines two different 
neural network architectures, CNN and LSTM, to perform the same task, 
taking advantage of both architectures to overcome the limitations of 
using one of them alone. This enhanced the results as shown in the 
previous section. This integration gives the ability to the proposed model 
to be combined with other Neural Networks architectures for further 
enhancements. This could make the proposed model to be considered a 
state-of-the-art approach in the near future. 

Third, the proposed hyper model is dynamic. Can be applied to other 
different applications in protein function prediction. The reason behind 
that, it integrates two different architectures, CNN and LSTM, which 
makes it easier to apply additional modifications to be used in different 
such as protein family classification, 3D structure prediction, protein- 
protein interaction networks and more, using different data types, 

images or sequences or both. 
Fourth the proposed model is compact, having the lowest model 

complexity, trainable parameters and hardware support as mentioned 
and discussed earlier. Deep_CNN_LSTM_GO outperformed the other 
methods with this regard, which likely would give the proposed model 
the priority in the future to be adopted from the research community 
and institutions for future research. 

8. Conclusion 

The proposed Deep_CNN_LSTM_GO is an accurate model for protein 
function prediction. This paper presented the proposed method and 
compared it to different methods proposed in the field in terms of several 
performance evaluation criteria: Precision, recall, Fmax, Smin, AUPR, 
hardware requirements, model complexity, etc .Deep_CNN_LSTM_GO 
was tested using different organisms from different datasets (UniProt- 
SwissProt’s, CAFA2, CAFA3, and CAFA4). 

The novality of the proposed method combined the functionalities of 
CNN and LSTM neural network models in order to reduce the number of 
layers in the deep learning model. The amount of computations required 
was also significantly reduced by the use of 1D-CNN. This resulted in the 
fact that the proposed Deep_CNN_LSTM_GO was trained on any standard 
CPU without the need for a dedicated GPU. We predict that our 
contribution will lead to rapid advances in the bioinformatics field as it 
will allow researchers without expensive hardware resources to explore 
and advance this field. 

Tabulated test results showed that the proposed Deep_-
CNN_LSTM_GO outperformed different methods proposed in the field in 
sub-ontologies and comparable results for the others using different test 
sets. The proposed model was able to annotate 4600 annotations for a 
single unknown protein in minutes. 

Deep_CNN_LSTM_GO can be used with minor modifications, to be 
extended and trained for different data sources such as protein 3D 
structures or a combination of two different data sources to be applied 
on different tasks such as phenotype diseases prediction from amino- 
acid sequences. This is the subject of another publication. 
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